3,006 research outputs found

    Three-Nucleon Force and the Δ\Delta-Mechanism for Pion Production and Pion Absorption

    Full text link
    The description of the three-nucleon system in terms of nucleon and Δ\Delta degrees of freedom is extended to allow for explicit pion production (absorption) from single dynamic Δ\Delta de-excitation (excitation) processes. This mechanism yields an energy dependent effective three-body hamiltonean. The Faddeev equations for the trinucleon bound state are solved with a force model that has already been tested in the two-nucleon system above pion-production threshold. The binding energy and other bound state properties are calculated. The contribution to the effective three-nucleon force arising from the pionic degrees of freedom is evaluated. The validity of previous coupled-channel calculations with explicit but stable Δ\Delta isobar components in the wavefunction is studied.Comment: 23 pages in Revtex 3.0, 9 figures (not included, available as postscript files upon request), CEBAF-TH-93-0

    Methylation landscape in the genome of higher plants of agronomical interest

    Full text link
    In eukaryotic cells the methylation of cytosines in DNA is an essential mechanism which is implied in the dynamic organization of the genome structure, in relation to genes expression. Plant genomes contain a significant proportion and variable according to the species, of sequences which are likely to be methylated during the life of the plant. It is known that the establishment and the maintenance of methylation profiles in both genomic areas and specific sequences constitute a crucial mediator in the modulation of genes expression during development. Recent studies have evidenced the implication of epimutations in the adaptation of plants to their environment particularly in response to biotic and abiotic stresses. Recently, the complete mapping of methylation in the genomes of Arabidopsis thaliana and rice provided invaluable information on the distribution of methylation within genes in relation to their expression. The impact of changes in the methylation profiles on the characters of agronomic importance has not been intensively studied yet, whereas this question takes a considerable importance in the context of an increasing food demand and foreseen global climate changes. The METHYLANDSCAPE project proposes to isolate genomic DNA sequences on the basis of their degree of methylation and to connect the variation of their methylation profiles with, on the one hand, the expression of the corresponding genes and, on the other hand, with environmental or developmental processes. Thus, it should be possible to identify genes which expression is differentially controlled by methylation during development and/or in situation of stress, and likely to have an influence on the agronomic value of the plant. The METHYLANDSCAPE partners thus propose to bring signification advances in plant genomics on four original species, by integrating DNA methylation mapping and the relationship between epigenome and transcriptome, up to the generation of methylation-sensitive markers linked with characters of agronomic importance. (Texte intégral

    Towards a Mg lattice clock: Observation of the 1S0^1S_{0}-3P0^3P_{0} transition and determination of the magic wavelength

    Full text link
    We optically excite the electronic state 3s3p 3P03s3p~^3P_{0} in 24^{24}Mg atoms, laser-cooled and trapped in a magic-wavelength lattice. An applied magnetic field enhances the coupling of the light to the otherwise strictly forbidden transition. We determine the magic wavelength, the quadratic magnetic Zeeman shift and the transition frequency to be 468.463(207)\,nm, -206.6(2.0)\,MHz/T2^2 and 655 058 646 691(101)\,kHz, respectively. These are compared with theoretical predictions and results from complementary experiments. We also developed a high-precision relativistic structure model for magnesium, give an improved theoretical value for the blackbody radiation shift and discuss a clock based on bosonic magnesium.Comment: 5 pages, 3 figure

    Benchmark calculation for proton-deuteron elastic scattering observables including Coulomb

    Full text link
    Two independent calculations of proton-deuteron elastic scattering observables including Coulomb repulsion between the two protons are compared in the proton lab energy region between 3 MeV and 65 MeV. The hadron dynamics is based on the purely nucleonic charge-dependent AV18 potential. Calculations are done both in coordinate space and momentum space. The coordinate-space calculations are based on a variational solution of the three-body Schr\"odinger equation using a correlated hyperspherical expansion for the wave function. The momentum-space calculations proceed via the solution of the Alt-Grassberger-Sandhas equation using the screened Coulomb potential and the renormalization approach. Both methods agree within 1% on all observables, showing the reliability of both numerical techniques in that energy domain. At energies below three-body breakup threshold the coordinate-space method remains favored whereas at energies higher than 65 MeV the momentum-space approach seems to be more efficient.Comment: Submitted to Phys. Rev.

    Practical approximation scheme for the pion dynamics in the three-nucleon system

    Get PDF
    We discuss a working approximation scheme to a recently developed formulation of the coupled piNNN-NNN problem. The approximation scheme is based on the physical assumption that, at low energies, the 2N-subsystem dynamics in the elastic channel is conveniently described by the usual 2N-potential approach, while the explicit pion dynamics describes small, correction-type effects. Using the standard separable-expansion method, we obtain a dynamical equation of the Alt-Grassberger-Sandhas (AGS) type. This is an important result, because the computational techniques used for solving the normal AGS equation can also be used to describe the pion dynamics in the 3N system once the matrix dimension is increased by one component. We have also shown that this approximation scheme treats the conventional 3N problem once the pion degrees of freedom are projected out. Then the 3N system is described with an extended AGS-type equation where the spin-off of the pion dynamics (beyond the 2N potential) is taken into account in additional contributions to the driving term. These new terms are shown to reproduce the diagrams leading to modern 3N-force models. We also recover two sets of irreducible diagrams that are commonly neglected in 3N-force discussions, and conclude that these sets should be further investigated, because a claimed cancellation is questionable.Comment: 18 pages, including 5 figures, RevTeX, Eps

    Unzipping Kinetics of Double-Stranded DNA in a Nanopore

    Get PDF
    We studied the unzipping kinetics of single molecules of double-stranded DNA by pulling one of their two strands through a narrow protein pore. PCR analysis yielded the first direct proof of DNA unzipping in such a system. The time to unzip each molecule was inferred from the ionic current signature of DNA traversal. The distribution of times to unzip under various experimental conditions fit a simple kinetic model. Using this model, we estimated the enthalpy barriers to unzipping and the effective charge of a nucleotide in the pore, which was considerably smaller than previously assumed.Comment: 10 pages, 5 figures, Accepted: Physics Review Letter

    Generalized isothermic lattices

    Full text link
    We study multidimensional quadrilateral lattices satisfying simultaneously two integrable constraints: a quadratic constraint and the projective Moutard constraint. When the lattice is two dimensional and the quadric under consideration is the Moebius sphere one obtains, after the stereographic projection, the discrete isothermic surfaces defined by Bobenko and Pinkall by an algebraic constraint imposed on the (complex) cross-ratio of the circular lattice. We derive the analogous condition for our generalized isthermic lattices using Steiner's projective structure of conics and we present basic geometric constructions which encode integrability of the lattice. In particular, we introduce the Darboux transformation of the generalized isothermic lattice and we derive the corresponding Bianchi permutability principle. Finally, we study two dimensional generalized isothermic lattices, in particular geometry of their initial boundary value problem.Comment: 19 pages, 11 figures; v2. some typos corrected; v3. new references added, higlighted similarities and differences with recent papers on the subjec

    Fundamental scaling laws of on-off intermittency in a stochastically driven dissipative pattern forming system

    Full text link
    Noise driven electroconvection in sandwich cells of nematic liquid crystals exhibits on-off intermittent behaviour at the onset of the instability. We study laser scattering of convection rolls to characterize the wavelengths and the trajectories of the stochastic amplitudes of the intermittent structures. The pattern wavelengths and the statistics of these trajectories are in quantitative agreement with simulations of the linearized electrohydrodynamic equations. The fundamental τ3/2\tau^{-3/2} distribution law for the durations τ\tau of laminar phases as well as the power law of the amplitude distribution of intermittent bursts are confirmed in the experiments. Power spectral densities of the experimental and numerically simulated trajectories are discussed.Comment: 20 pages and 17 figure

    Why is the three-nucleon force so odd?

    Get PDF
    By considering a class of diagrams which has been overlooked also in the most recent literature on three-body forces, we extract a new contribution to the three-nucleon interaction which specifically acts on the triplet odd states of the two nucleon subsystem. In the static approximation, this 3N-force contribution is fixed by the underlying 2N interaction, so in principle there are no free parameters to adjust. The 2N amplitude however enters in the 3NF diagram in a form which cannot be directly accessed or constrained by NN phase-shift analysis. We conclude that this new 3N-force contribution provides a mechanism which implies that the presence of the third nucleon modifies the p-wave (and possibly the f-wave) components of the 2N subsystem in the triplet-isotriplet channels.Comment: 10 Pages, 7 figures, RevTeX, twocolumn, epsf (updated version with minor changes

    A Y2H-seq approach defines the human protein methyltransferase interactome

    No full text
    To accelerate high-density interactome mapping, we developed a yeast two-hybrid interaction screening approach involving short-read second-generation sequencing (Y2H-seq) with improved sensitivity and a quantitative scoring readout allowing rapid interaction validation. We applied Y2H-seq to investigate enzymes involved in protein methylation, a largely unexplored post-translational modification. The reported network of 523 interactions involving 22 methyltransferases or demethylases is comprehensively annotated and validated through coimmunoprecipitation experiments and defines previously undiscovered cellular roles of nonhistone protein methylation
    corecore