We optically excite the electronic state 3s3p3P0 in 24Mg atoms,
laser-cooled and trapped in a magic-wavelength lattice. An applied magnetic
field enhances the coupling of the light to the otherwise strictly forbidden
transition. We determine the magic wavelength, the quadratic magnetic Zeeman
shift and the transition frequency to be 468.463(207)nm,
-206.6(2.0)MHz/T2 and 655 058 646 691(101)kHz, respectively. These
are compared with theoretical predictions and results from complementary
experiments. We also developed a high-precision relativistic structure model
for magnesium, give an improved theoretical value for the blackbody radiation
shift and discuss a clock based on bosonic magnesium.Comment: 5 pages, 3 figure