1,755 research outputs found

    Tap73 is essential for germ cell adhesion and maturation in testis

    Get PDF
    A core evolutionary function of the p53 family is to protect the genomic integrity of gametes. However, the role of p73 in the male germ line is unknown. Here, we reveal that TAp73 unexpectedly functions as an adhesion and maturation factor of the seminiferous epithelium orchestrating spermiogenesis. TAp73 knockout (TAp73KO) and p73KO mice, but not ΔNp73KO mice, display a “near-empty seminiferous tubule” phenotype due to massive premature loss of immature germ cells. The cellular basis of this phenotype is defective cell–cell adhesions of developing germ cells to Sertoli nurse cells, with likely secondary degeneration of Sertoli cells, including the blood–testis barrier, which leads to disruption of the adhesive integrity and maturation of the germ epithelium. At the molecular level, TAp73, which is produced in germ cells, controls a coordinated transcriptional program of adhesion- and migration-related proteins including peptidase inhibitors, proteases, receptors, and integrins required for germ–Sertoli cell adhesion and dynamic junctional restructuring. Thus, we propose the testis as a unique organ with strict division of labor among all family members: p63 and p53 safeguard germ line fidelity, whereas TAp73 ensures fertility by enabling sperm maturation

    Using network-flow techniques to solve an optimization problem from surface-physics

    Full text link
    The solid-on-solid model provides a commonly used framework for the description of surfaces. In the last years it has been extended in order to investigate the effect of defects in the bulk on the roughness of the surface. The determination of the ground state of this model leads to a combinatorial problem, which is reduced to an uncapacitated, convex minimum-circulation problem. We will show that the successive shortest path algorithm solves the problem in polynomial time.Comment: 8 Pages LaTeX, using Elsevier preprint style (macros included

    Growth inhibition in clonal subpopulations of a human epithelioid sarcoma cell line by retinoic acid and tumour necrosis factor alpha.

    Get PDF
    Epithelioid sarcoma is a highly malignant soft tissue tumour that is refractory to conventional chemotherapy and irradiation. Since permanent cell lines of this tumour are extremely rare, in vitro data on compounds with significant antiproliferative effects are still lacking. Therefore, we investigated the effects of retinoic acid (RA) and tumour necrosis factor alpha (TNF-alpha) on tumour cell proliferation of three different clonal subpopulations (GRU-1A, GRU-1B, GRU-1C) derived from the same human epithelioid sarcoma cell line, GRU-1. In GRU-1A both RA (P=0.01) and TNF-alpha (P=0.002) exhibited highly significant and dose-dependent growth inhibitory effects, which could further be increased by a combined application of both compounds (P<0.006). GRU-1B proved to be sensitive to RA (P=0.006), whereas no response to TNF-alpha was observed. GRU-1C was resistant to both RA and TNF-alpha. The antiproliferative effect of TNF-alpha was mediated by TNF receptor 1(TNF-R1) and correlated positively with both the number of TNF-R1 per cell and receptor affinity. No correlation was detected between RA-induced growth inhibition and the expression pattern of the RA receptors (RARs) RAR-alpha, RAR-beta, and RAR-gamma. Plating efficiency, however, could exclusively be reduced by RA in GRU-1B, the only cell line expressing RAR-alpha. Taken together, these data are the first showing significant antiproliferative effects in human epithelioid sarcoma by RA and TNF-alpha. Whereas the TNF-alpha response seems to depend on the expression of TNF-R1, no simple correlation could be found between RA sensitivity and the expression pattern of RARs

    Equilibrium shapes and energies of coherent strained InP islands

    Get PDF
    The equilibrium shapes and energies of coherent strained InP islands grown on GaP have been investigated with a hybrid approach that has been previously applied to InAs islands on GaAs. This combines calculations of the surface energies by density functional theory and the bulk deformation energies by continuum elasticity theory. The calculated equilibrium shapes for different chemical environments exhibit the {101}, {111}, {\=1\=1\=1} facets and a (001) top surface. They compare quite well with recent atomic-force microscopy data. Thus in the InP/GaInP-system a considerable equilibration of the individual islands with respect to their shapes can be achieved. We discuss the implications of our results for the Ostwald ripening of the coherent InP islands. In addition we compare strain fields in uncapped and capped islands.Comment: 10 pages including 6 figures. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Laser-Cluster-Interaction in a Nanoplasma-Model with Inclusion of Lowered Ionization Energies

    Full text link
    The interaction of intense laser fields with silver and argon clusters is investigated theoretically using a modified nanoplasma model. Single pulse and double pulse excitations are considered. The influence of the dense cluster environment on the inner ionization processes is studied including the lowering of the ionization energies. There are considerable changes in the dynamics of the laser-cluster interaction. Especially, for silver clusters, the lowering of the ionization energies leads to increased yields of highly charged ions.Comment: 10 pages, 11 figure

    p53Psi is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state

    Get PDF
    Although much is known about the underlying mechanisms of p53 activity and regulation, the factors that influence the diversity and duration of p53 responses are not well understood. Here we describe a unique mode of p53 regulation involving alternative splicing of the TP53 gene. We found that the use of an alternative 3' splice site in intron 6 generates a unique p53 isoform, dubbed p53Psi. At the molecular level, p53Psi is unable to bind to DNA and does not transactivate canonical p53 target genes. However, like certain p53 gain-of-function mutants, p53Psi attenuates the expression of E-cadherin, induces expression of markers of the epithelial-mesenchymal transition, and enhances the motility and invasive capacity of cells through a unique mechanism involving the regulation of cyclophilin D activity, a component of the mitochondrial inner pore permeability. Hence, we propose that p53Psi encodes a separation-of-function isoform that, although lacking canonical p53 tumor suppressor/transcriptional activities, is able to induce a prometastatic program in a transcriptionally independent manner

    Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake.

    Get PDF
    During 1986 planktonic primary production and controlling factors were investigated in a small (A0 = 11.8 · 103 m2, Zmax = 11.5 m) meromictic kettle lake (Mittlerer Buchensee). Annual phytoplankton productivity was estimated to ca 120 gC · m–2 · a–1 (1,42 tC · lake–1 · a–1). The marked thermal stratification of the lake led to irregular vertical distributions of chlorophylla concentrations (Chla) and, to a minor extent, of photosynthesis (Az). Between the depths of 0 to 6 m low Chla concentrations (< 7 mg · m–3) and comparatively high background light attenuation (kw = 0,525 m–1, 77% of total attenuation due to gelbstoff and abioseston) was found. As a consequence, light absorption by algae was low (mean value 17,4%) and self-shading was absent. Because of the small seasonal variation of Chla concentrations, no significant correlation between Chla and areal photosynthesis (A) was observed. Only in early summer (June–July) biomass appears to influence the vertical distribution of photosynthesis on a bigger scale. Around 8 m depth, low-light adapted algae and phototrophic bacteria formed dense layers. Due to low ambient irradiances, the contribution of these organisms to total primary productivity was small. Primary production and incident irradiance were significantly correlated with each other (r2 = 0.68). Although the maximum assimilation number (Popt) showed a clear dependence upon water temperature (Q10 = 2.31), the latter was of minor importance to areal photosynthesis

    Investigation of nitrogen enriched silicon for particle detectors

    Get PDF
    This article explores the viability of nitrogen enriched silicon for particle physics application. For that purpose silicon diodes and strip sensors were produced using high resistivity float zone silicon, diffusion oxygenated float zone silicon, nitrogen enriched float zone silicon and magnetic Czochralski silicon. The article features comparative studies using secondary ion mass spectrometry, electrical characterization, edge transient current technique, source and thermally stimulated current spectroscopy measurements on sensors that were irradiated up to a fluence of 1015 neq/cm2. Irradiations were performed with 23 MeV protons at the facilities in Karlsruhe (KIT), with 24 GeV/c protons at CERN (PS-IRRAD) and neutrons at the research reactor in Ljubljana. Secondary ion mass spectrometry measurements give evidence for nitrogen loss after processing, which makes gaining from nitrogen enrichment difficult
    • …
    corecore