129 research outputs found

    Current recommendations for clinical surveillance and genetic testing in rhabdoid tumor predisposition : a report from the SIOPE Host Genome Working Group

    Get PDF
    The rhabdoid tumor (RT) predisposition syndromes 1 and 2 (RTPS1 and 2) are rare genetic conditions rendering young children vulnerable to an increased risk of RT, malignant neoplasms affecting the kidney, miscellaneous soft-part tissues, the liver and the central nervous system (Atypical Teratoid Rhabdoid Tumors, ATRT). Both, RTPS1&2 are due to pathogenic variants (PV) in genes encoding constituents of the BAF chromatin remodeling complex, i.e. SMARCB1 (RTPS1) and SMARCA4 (RTPS2). In contrast to other genetic disorders related to PVs in SMARCB1 and SMARCA4 such as Coffin-Siris Syndrome, RTPS1&2 are characterized by a predominance of truncating PVs, terminating transcription thus explaining a specific cancer risk. The penetrance of RTPS1 early in life is high and associated with a poor survival. However, few unaffected carriers may be encountered. Beyond RT, the tumor spectrum may be larger than initially suspected, and cancer surveillance offered to unaffected carriers (siblings or parents) and long-term survivors of RT is still a matter of discussion. RTPS2 exposes female carriers to an ill-defined risk of small cell carcinoma of the ovaries, hypercalcemic type (SCCOHT), which may appear in prepubertal females. RT surveillance protocols for these rare families have not been established. To address unresolved issues in the care of individuals with RTPS and to propose appropriate surveillance guidelines in childhood, the SIOPe Host Genome working group invited pediatric oncologists and geneticists to contribute to an expert meeting. The current manuscript summarizes conclusions of the panel discussion, including consented statements as well as non-evidence-based proposals for validation in the future.Peer reviewe

    Aberrant signaling in T-cell acute lymphoblastic leukemia: biological and therapeutic implications

    Get PDF
    T-cell acute lymphoblastic leukemia (T-ALL) is a biologically heterogeneous disease with respect to phenotype, gene expression profile and activation of particular intracellular signaling pathways. Despite very significant improvements, current therapeutic regimens still fail to cure a portion of the patients and frequently implicate the use of aggressive protocols with long-term side effects. In this review, we focused on how deregulation of critical signaling pathways, in particular Notch, PI3K/Akt, MAPK, Jak/STAT and TGF-beta, may contribute to T-ALL. Identifying the alterations that affect intracellular pathways that regulate cell cycle and apoptosis is essential to understanding the biology of this malignancy, to define more effective markers for the correct stratification of patients into appropriate therapeutic regimens and to identify novel targets for the development of specific, less detrimental therapies for T-ALL

    t10c12 Conjugated Linoleic Acid Suppresses HER2 Protein and Enhances Apoptosis in SKBr3 Breast Cancer Cells: Possible Role of COX2

    Get PDF
    BACKGROUND: HER2-targeted therapy with the monoclonal antibody trastuzumab (Herceptin) has improved disease-free survival for women diagnosed with HER2-positive breast cancers; however, treatment resistance and disease progression are not uncommon. Current data suggest that resistance to treatment in HER2 cancers may be a consequence of NF-kappaB overexpression and increased COX2-derived prostaglandin E2 (PGE(2)). Conjugated linoleic acid (CLA) has been shown to have anti-tumor properties and to inhibit NF-kappaB activity and COX2. METHODS: In this study, HER2-overexpressing SKBr3 breast cancer cells were treated with t10c12 CLA. Protein expression of the HER2 receptor, nuclear NF-kappaB p65, and total and phosphorylated IkappaB were examined by western blot and immunofluorescence. PGE(2) levels were determined by ELISA. Proliferation was measured by metabolism of 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), and apoptosis was measured by FITC-conjugated Annexin V staining and flow cytometry. RESULTS/CONCLUSIONS: We observed a significant decrease in HER2 protein expression on western blot following treatment with 40 and 80 microM t10c12 CLA (p<0.01 and 0.001, respectively) and loss of HER2 protein in cells using immunoflourescence that was most pronounced at 80 microM. Protein levels of nuclear NF-kappaB p65 were also significantly reduced at the 80 microM dose. This was accompanied by a significant decrease in PGE(2) levels (p = 0.05). Pretreatment with t10c12 CLA significantly enhanced TNFalpha-induced apoptosis and the anti-proliferative action of trastuzumab (p = 0.05 and 0.001, respectively). These data add to previous reports of an anti-tumor effect of t10c12 CLA and suggest an effect on the HER2 oncogene that may be through CLA mediated downregulation of COX2-derived PGE(2)

    Methylation profiling of choroid plexus tumors reveals 3 clinically distinct subgroups

    Get PDF
    BACKGROUND: Choroid plexus tumors are intraventricular neoplasms derived from the choroid plexus epithelium. A better knowledge of molecular factors involved in choroid plexus tumor biology may aid in identifying patients at risk for recurrence. METHODS: Methylation profiles were examined in 29 choroid plexus papillomas (CPPs, WHO grade I), 32 atypical choroid plexus papillomas (aCPPs, WHO grade II), and 31 choroid plexus carcinomas (CPCs, WHO grade III) by Illumina Infinium HumanMethylation450 Bead Chip Array. RESULTS: Unsupervised hierarchical clustering identified 3 subgroups: methylation cluster 1 (pediatric CPP and aCPP of mainly supratentorial location), methylation cluster 2 (adult CPP and aCPP of mainly infratentorial location), and methylation cluster 3 (pediatric CPP, aCPP, and CPC of supratentorial location). In methylation cluster 3, progression-free survival (PFS) accounted for a mean of 72 months (CI, 55-89 mo), whereas only 1 of 42 tumors of methylation clusters 1 and 2 progressed (P< .001). On stratification of outcome data according to WHO grade, all CPCs clustered within cluster 3 and were associated with shorter overall survival (mean, 105 mo [CI, 81-128 mo]) and PFS (mean, 55 mo [CI, 36-73 mo]). The aCPP of methylation cluster 3 also progressed frequently (mean, 69 mo [CI, 44-93 mo]), whereas no tumor progression was observed in aCPP of methylation clusters 1 and 2 (P< .05). Only 1 of 29 CPPs recurred. CONCLUSIONS: Methylation profiling of choroid plexus tumors reveals 3 distinct subgroups (ie, pediatric low-risk choroid plexus tumors [cluster 1], adult low-risk choroid plexus tumors [cluster 2], and pediatric high-risk choroid plexus tumors [cluster 3]) and may provide useful prognostic information in addition to histopathology

    Infant High-Grade Gliomas Comprise Multiple Subgroups Characterized by Novel Targetable Gene Fusions and Favorable Outcomes.

    Get PDF
    Infant high-grade gliomas appear clinically distinct from their counterparts in older children, indicating that histopathologic grading may not accurately reflect the biology of these tumors. We have collected 241 cases under 4 years of age, and carried out histologic review, methylation profiling, and custom panel, genome, or exome sequencing. After excluding tumors representing other established entities or subgroups, we identified 130 cases to be part of an "intrinsic" spectrum of disease specific to the infant population. These included those with targetable MAPK alterations, and a large proportion of remaining cases harboring gene fusions targeting ALK (n = 31), NTRK1/2/3 (n = 21), ROS1 (n = 9), and MET (n = 4) as their driving alterations, with evidence of efficacy of targeted agents in the clinic. These data strongly support the concept that infant gliomas require a change in diagnostic practice and management. SIGNIFICANCE: Infant high-grade gliomas in the cerebral hemispheres comprise novel subgroups, with a prevalence of ALK, NTRK1/2/3, ROS1, or MET gene fusions. Kinase fusion-positive tumors have better outcome and respond to targeted therapy clinically. Other subgroups have poor outcome, with fusion-negative cases possibly representing an epigenetically driven pluripotent stem cell phenotype.See related commentary by Szulzewsky and Cimino, p. 904.This article is highlighted in the In This Issue feature, p. 890

    RelB-Dependent Stromal Cells Promote T-Cell Leukemogenesis

    Get PDF
    BACKGROUND: The Rel/NF-kappaB transcription factors are often activated in solid or hematological malignancies. In most cases, NF-kappaB activation is found in malignant cells and results from activation of the canonical NF-kappaB pathway, leading to RelA and/or c-Rel activation. Recently, NF-kappaB activity in inflammatory cells infiltrating solid tumors has been shown to contribute to solid tumor initiation and progression. Noncanonical NF-kappaB activation, which leads to RelB activation, has also been reported in breast carcinoma, prostate cancer, and lymphoid leukemia. METHODOLOGY/PRINCIPAL FINDINGS: Here we report a novel role for RelB in stromal cells that promote T-cell leukemogenesis. RelB deficiency delayed leukemia onset in the TEL-JAK2 transgenic mouse model of human T acute lymphoblastic leukemia. Bone marrow chimeric mouse experiments showed that RelB is not required in the hematopoietic compartment. In contrast, RelB plays a role in radio-resistant stromal cells to accelerate leukemia onset and increase disease severity. CONCLUSIONS/SIGNIFICANCE: The present results are the first to uncover a role for RelB in the crosstalk between non-hematopoietic stromal cells and leukemic cells. Thus, besides its previously reported role intrinsic to specific cancer cells, the noncanonical NF-kappaB pathway may also play a pro-oncogenic role in cancer microenvironmental cells

    Signatures of Environmental Genetic Adaptation Pinpoint Pathogens as the Main Selective Pressure through Human Evolution

    Get PDF
    Previous genome-wide scans of positive natural selection in humans have identified a number of non-neutrally evolving genes that play important roles in skin pigmentation, metabolism, or immune function. Recent studies have also shown that a genome-wide pattern of local adaptation can be detected by identifying correlations between patterns of allele frequencies and environmental variables. Despite these observations, the degree to which natural selection is primarily driven by adaptation to local environments, and the role of pathogens or other ecological factors as selective agents, is still under debate. To address this issue, we correlated the spatial allele frequency distribution of a large sample of SNPs from 55 distinct human populations to a set of environmental factors that describe local geographical features such as climate, diet regimes, and pathogen loads. In concordance with previous studies, we detected a significant enrichment of genic SNPs, and particularly non-synonymous SNPs associated with local adaptation. Furthermore, we show that the diversity of the local pathogenic environment is the predominant driver of local adaptation, and that climate, at least as measured here, only plays a relatively minor role. While background demography by far makes the strongest contribution in explaining the genetic variance among populations, we detected about 100 genes which show an unexpectedly strong correlation between allele frequencies and pathogenic environment, after correcting for demography. Conversely, for diet regimes and climatic conditions, no genes show a similar correlation between the environmental factor and allele frequencies. This result is validated using low-coverage sequencing data for multiple populations. Among the loci targeted by pathogen-driven selection, we found an enrichment of genes associated to autoimmune diseases, such as celiac disease, type 1 diabetes, and multiples sclerosis, which lends credence to the hypothesis that some susceptibility alleles for autoimmune diseases may be maintained in human population due to past selective processes

    Differential Deployment of REST and CoREST Promotes Glial Subtype Specification and Oligodendrocyte Lineage Maturation

    Get PDF
    The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a master transcriptional regulator that binds to numerous genomic RE1 sites where it acts as a molecular scaffold for dynamic recruitment of modulatory and epigenetic cofactors, including corepressor for element-1-silencing transcription factor (CoREST). CoREST also acts as a hub for various cofactors that play important roles in epigenetic remodeling and transcriptional regulation. While REST can recruit CoREST to its macromolecular complex, CoREST complexes also function at genomic sites independently of REST. REST and CoREST perform a broad array of context-specific functions, which include repression of neuronal differentiation genes in neural stem cells (NSCs) and other non-neuronal cells as well as promotion of neurogenesis. Despite their involvement in multiple aspects of neuronal development, REST and CoREST are not believed to have any direct modulatory roles in glial cell maturation.We challenged this view by performing the first study of REST and CoREST in NSC-mediated glial lineage specification and differentiation. Utilizing ChIP on chip (ChIP-chip) assays, we identified distinct but overlapping developmental stage-specific profiles for REST and CoREST target genes during astrocyte (AS) and oligodendrocyte (OL) lineage specification and OL lineage maturation and myelination, including many genes not previously implicated in glial cell biology or linked to REST and CoREST regulation. Amongst these factors are those implicated in macroglial (AS and OL) cell identity, maturation, and maintenance, such as members of key developmental signaling pathways and combinatorial transcription factor codes.Our results imply that REST and CoREST modulate not only neuronal but also glial lineage elaboration. These factors may therefore mediate critical developmental processes including the coupling of neurogenesis and gliogenesis and neuronal-glial interactions that underlie synaptic and neural network plasticity and homeostasis in health and in specific neurological disease states
    • …
    corecore