7,811 research outputs found
Marine ecosystem community carbon and nutrient uptake stoichiometry under varying ocean acidification during the PeECE III experiment
Changes to seawater inorganic carbon and nutrient concentrations in response to the deliberate CO2 perturbation of natural plankton assemblages were studied during the 2005 Pelagic Ecosystem CO2 Enrichment (PeECE III) experiment. Inverse analysis of the temporal inorganic carbon dioxide system and nutrient variations was used to determine the net community stoichiometric uptake characteristics of a natural pelagic ecosystem perturbed over a range of pCO2 scenarios (350, 700 and 1050 μatm). Nutrient uptake showed no sensitivity to CO2 treatment. There was enhanced carbon production relative to nutrient consumption in the higher CO2 treatments which was positively correlated with the initial CO2 concentration. There was no significant calcification response to changing CO2 in Emiliania huxleyi by the peak of the bloom and all treatments exhibited low particulate inorganic carbon production (~15 μmol kg−1). With insignificant air-sea CO2 exchange across the treatments, the enhanced carbon uptake was due to increase organic carbon production. The inferred cumulative C:N:P stoichiometry of organic production increased with CO2 treatment from 1:6.3:121 to 1:7.1:144 to 1:8.25:168 at the height of the bloom. This study discusses how ocean acidification may incur modification to the stoichiometry of pelagic production and have consequences for ocean biogeochemical cycling
Quantum gate in the decoherence-free subspace of trapped ion qubits
We propose a geometric phase gate in a decoherence-free subspace with trapped
ions. The quantum information is encoded in the Zeeman sublevels of the
ground-state and two physical qubits to make up one logical qubit with ultra
long coherence time. Single- and two-qubit operations together with the
transport and splitting of linear ion crystals allow for a robust and
decoherence-free scalable quantum processor. For the ease of the phase gate
realization we employ one Raman laser field on four ions simultaneously, i.e.
no tight focus for addressing. The decoherence-free subspace is left neither
during gate operations nor during the transport of quantum information.Comment: 6 pages, 6 figure
Successive opening of the Fermi surface in doped N-leg Hubbard ladders
We study the effect of doping away from half-filling in weakly (but finitely)
interacting N-leg Hubbard ladders using renormalization group and bosonization
techniques. For a small on-site repulsion U, the N-leg Hubbard ladders are
equivalent to a N-band model, where at half-filling the Fermi velocities are
v_{1}=v_{N}<v_{2}=v_{N-1}<... We then obtain a hierarchy of energy-scales,
where the band pairs (j,N+1-j) are successively frozen out. The low-energy
Hamiltonian is then the sum of N/2 (or (N-1)/2 for N odd) two-leg ladder
Hamiltonians without gapless excitations (plus a single chain for N odd with
one gapless spin mode), similar to the N-leg Heisenberg spin-ladders. The
energy-scales lead to a hierarchy of gaps. Upon doping away from half-filling,
the holes enter first the band(s) with the smallest gap: For odd N, the holes
enter first the nonbonding band (N+1)/2 and the phase is a Luttinger liquid,
while for even N, the holes enter first the band pair (N/2,N/2+1) and the phase
is a Luther-Emery liquid, similar to numerical treatments of the t-J model,
i.e., at and close to half-filling, the phases of the Hubbard ladders for small
and large U are the same. For increasing doping, hole-pairs subsequently enter
at critical dopings the other band pairs (j,N+1-j) (accompanied by a diverging
compressibility): The Fermi surface is successively opened by doping, starting
near the wave vector (pi/2,pi/2). Explicit calculations are given for the cases
N=3,4.Comment: 10 pages, 4 figures, to be published in Phys. Rev.
Anomalous Exponent of the Spin Correlation Function of a Quantum Hall Edge
The charge and spin correlation functions of partially spin-polarized edge
electrons of a quantum Hall bar are studied using effective Hamiltonian and
bosonization techniques. In the presence of the Coulomb interaction between the
edges with opposite chirality we find a different crossover behavior in spin
and charge correlation functions. The crossover of the spin correlation
function in the Coulomb dominated regime is characterized by an anomalous
exponent, which originates from the finite value of the effective interaction
for the spin degree of freedom in the long wavelength limit. The anomalous
exponent may be determined by measuring nuclear spin relaxation rates in a
narrow quantum Hall bar or in a quantum wire in strong magnetic fields.Comment: 4 pages, Revtex file, no figures. To appear in Physical Revews B,
Rapid communication
Strongly Correlated Fractional Quantum Hall Line Junctions
We have studied a clean finite-length line junction between interacting
counterpropagating single-branch fractional-quantum-Hall edge channels. Exact
solutions for low-lying excitations and transport properties are obtained when
the two edges belong to quantum Hall systems with different filling factors and
interact via the long-range Coulomb interaction. Charging effects due to the
coupling to external edge-channel leads are fully taken into account.
Conductances and power laws in the current-voltage characteristics of tunneling
are strongly affected by inter-edge correlations.Comment: 4 pages, 1 figure, RevTex4, typos corrected + references added, to
appear in Phys. Rev. Let
Finite-Size Bosonization and Self-Consistent Harmonic Approximation
The self-consistent harmonic approximation is extended in order to account
for the existence of Klein factors in bosonized Hamiltonians. This is important
for the study of finite systems where Klein factors cannot be ignored a priori.
As a test we apply the method to interacting spinless fermions with modulated
hopping. We calculate the finite-size corrections to the energy gap and the
Drude weight and compare our results with the exact solution for special values
of the model parameters
Steric repulsion and van der Waals attraction between flux lines in disordered high Tc superconductors
We show that in anisotropic or layered superconductors impurities induce a
van der Waals attraction between flux lines. This attraction together with the
disorder induced repulsion may change the low B - low T phase diagram
significantly from that of the pure thermal case considered recently by Blatter
and Geshkenbein [Phys. Rev. Lett. 77, 4958 (1996)].Comment: Latex, 4 pages, 1 figure (Phys. Rev. Lett. 79, 139 (1997)
Absence of string order in the anisotropic S=2 Heisenberg antiferromagnet
We study an AFM Heisenberg S=2 quantum spin chain at T=0 with both
interaction and on-site anisotropy, H = \sum_{i}
{1/2}(S^{+}_{i}S^{-}_{i+1}+S^{-}_{i}S^{+}_{i+1})
+J^{z}S^{z}_{i}S^{z}_{i+1}+D(S^{z}_{i})^{2}. Contradictory scenarios exist for
the S=2 anisotropic phase diagram, implying different mechanisms of the
emergence of the classical limit. One main AKLT-based scenario predicts the
emergence of a cascade of phase transitions not seen in the S=1 case. Another
scenario is in favor of an almost classical phase diagram for S=2; the S=1 case
then is very special with its dominant quantum effects. Numerical studies have
not been conclusive. Using the DMRG, the existence of hidden topological order
in the anisotropic S=2 chain is examined, as it distinguishes between the
proposed scenarios. We show that the topological order is zero in the
thermodynamical limit in all disordered phases, in particular in the new phase
interposed between the Haldane and large- phases. This excludes the
AKLT-model based scenario in favor of an almost classical phase diagram for the
spin chains.Comment: 9 pages, 9 eps figures, uses RevTeX, submitted to PR
Extended Classical Over-Barrier Model for Collisions of Highly Charged Ions with Conducting and Insulating Surfaces
We have extended the classical over-barrier model to simulate the
neutralization dynamics of highly charged ions interacting under grazing
incidence with conducting and insulating surfaces. Our calculations are based
on simple model rates for resonant and Auger transitions. We include effects
caused by the dielectric response of the target and, for insulators, localized
surface charges. Characteristic deviations regarding the charge transfer
processes from conducting and insulating targets to the ion are discussed. We
find good agreement with previously published experimental data for the image
energy gain of a variety of highly charged ions impinging on Au, Al, LiF and KI
crystals.Comment: 32 pages http://pikp28.uni-muenster.de/~ducree
Depinning in a Random Medium
We develop a renormalized continuum field theory for a directed polymer
interacting with a random medium and a single extended defect. The
renormalization group is based on the operator algebra of the pinning
potential; it has novel features due to the breakdown of hyperscaling in a
random system. There is a second-order transition between a localized and a
delocalized phase of the polymer; we obtain analytic results on its critical
pinning strength and scaling exponents. Our results are directly related to
spatially inhomogeneous Kardar-Parisi-Zhang surface growth.Comment: 11 pages (latex) with one figure (now printable, no other changes
- …