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Abstract. Changes to seawater inorganic carbon and nutrient
concentrations in response to the deliberate CO2 perturba-
tion of natural plankton assemblages were studied during the
2005 Pelagic Ecosystem CO2 Enrichment (PeECE III) ex-
periment. Inverse analysis of the temporal inorganic carbon
dioxide system and nutrient variations was used to determine
the net community stoichiometric uptake characteristics of
a natural pelagic ecosystem perturbed over a range ofpCO2
scenarios (350, 700 and 1050µatm). Nutrient uptake showed
no sensitivity to CO2 treatment. There was enhanced car-
bon production relative to nutrient consumption in the higher
CO2 treatments which was positively correlated with the ini-
tial CO2 concentration. There was no significant calcifica-
tion response to changing CO2 in Emiliania huxleyiby the
peak of the bloom and all treatments exhibited low partic-
ulate inorganic carbon production (∼15µmol kg−1). With
insignificant air-sea CO2 exchange across the treatments, the
enhanced carbon uptake was due to increase organic carbon
production. The inferred cumulative C:N:P stoichiometry
of organic production increased with CO2 treatment from
1:6.3:121 to 1:7.1:144 to 1:8.25:168 at the height of the
bloom. This study discusses how ocean acidification may in-
cur modification to the stoichiometry of pelagic production
and have consequences for ocean biogeochemical cycling.
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1 Introduction

Consequent to the increase in the atmospheric load of car-
bon dioxide (CO2), due to anthropogenic release, there has
been an increase in the oceanic carbon reservoir (Sabine et
al., 2004). At the air-sea interface, the productive, euphotic
surface ocean is a transient buffer in the process of ocean-
atmosphere CO2 equilibrium, a process retarded by the slow
mixing of the surface waters with the intermediate and deep
ocean. As such, the greatest changes to the CO2 system are
occurring in the surface waters. This build up of CO2 is al-
ready altering the carbonate chemistry of the oceans and pro-
jections on decadal to centennial timescales point to changes
in seawater pH (Caldeira and Wickett, 2003; Bellerby et al.,
2005; Blackford and Gilbert, 2007) and carbonate species
(Orr et al., 2005) that may have ramifications for the success
of organisms or whole marine ecosystems (e.g. Raven et al.,
2005; Riebesell, 2004; Kleypas et al., 2006).

Exposure of phytoplankton to pH and CO2 levels relevant
to those anticipated over the coming decades leads to modi-
fications in physiological or morphological properties which
may have consequences for ecological structure and biogeo-
chemical cycling. The general assertion is that increasing
CO2 has deleterious effects on the growth and productivity
of marine calcifiers (e.g. Riebesell et al., 2000; Delille et al.,
2005; Orr et al., 2005), although there are notable exceptions
(Langer et al., 2006). Overconsumption of carbon, a com-
mon response to nutrient and environmental stress is mag-
nified under high CO2 conditions (Zondervan et al., 2002;
Engel et al., 2005). Changing CO2 concentrations in aquatic
systems has been shown to influence phytoplankton species
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succession (Tortell et al., 2002). Changes to the nutritional
quality (higher C:P), in response to increased CO2, of phy-
toplankton as a food source results in lower growth rate and
fecundity in zooplankton (Urabe et al., 2003)

Efforts to understand potential consequences and feed-
backs of increasing CO2 have employed laboratory and
mesocosm studies either at the individual species level or
on natural and perturbed ecosystems (Riebesell et al., 2000;
Delille et al., 2005). In this study, a natural ecosystem was
perturbed with nutrients over a range of atmospheric CO2
scenarios extending previous studies to include the effects of
very high CO2 concentrations postulated for the 22nd cen-
tury.

2 Methods

2.1 Experimental

A mesocosm experiment was performed between 15 May
and 9 June 2005 at the University of Bergen Marine Bi-
ological station in Raunefjorden, Norway. Nine polyethy-
lene enclosures (∼25 m3, 9.5 m water depth) were moored
to a raft equipped with a floating laboratory. The enclosures
where filled with fjord water from 12 m depth, and manip-
ulated in order to obtain triplicates of three differentpCO2
concentrations (1×CO2 (350µatm), 2×CO2 (700µatm) and
3×CO2 (1050µatm)). Addition of fresh water to the upper
5.5 m of the enclosures ensured the generation of a mixed
layer separated from the underlying water by a salinity gra-
dient of 1.5. Nitrate and Phosphate were added to the up-
per mixed layer resulting in initial respective concentrations
of 16 and 0.8µmol kg−1. A comprehensive description of
the mesocosm setup, CO2 and nutrient perturbation and sam-
pling strategy, as well as the nutrient measurement method-
ology can be found in Schulz et al. (2008).

Samples for determining the carbon dioxide system were
taken from seawater pumped from 1 m depth in each of the
enclosures. The partial pressure of carbon dioxide (pCO2)

was determined in air equilibrated with seawaterpCO2 us-
ing an infrared gas analyser (Li-Cor 6262) (Wanninkhof and
Thoning, 1993). Gas calibration of the instrument against
high quality air standards containing mixing ratios of 345,
415 and 1100 ppm enveloped the daily seawater measure-
ment program. Following thepCO2 measurements, using
the same sampling methodology, samples for total alkalinity
(AT ) and total dissolved inorganic carbon (CT ) were drawn
into 500 ml borate bottles and immediately poisoned with
HgCl2. AT was measured using Gran potentiometric titration
(Gran, 1952) on a VINDTA system (Mintrop et al., 2000)
with a precision of≤4µmol kg−1. CT was determined using
coulometric titration (Johnson et al., 1987) with a precision
of ≤2µmol kg−1. For both AT and CT measurements, sam-
ples were filtered through GF/F filters placed in the sample

inlet tubes to the respective instruments immediately prior to
measurement.

2.2 Calculations

As the system had settled down by day 2 (16 May), fol-
lowing the initial CO2 and nutrient perturbations (Schulz
et al., 2008), all changes to the biogeochemical fields were
referenced to this date. Calculation of additional carbon
dioxide system variables, from measured CT and AT used
the CO2SYS program (Lewis and Wallace, 1998) adopting
the dissociation constants for carbonic acid (Dickson and
Millero, 1987), boric acid (Dickson, 1990a) and sulphuric
acid (Dickson, 1990b) and the CO2 solubility coefficient
from Weiss (1974). Seawater pH is reported on the total hy-
drogen scale.

Particulate inorganic carbon (PIC) production was calcu-
lated from temporal changes (1t) in total alkalinity with
appropriate correction for alkalinity contributions from net
nitrate and phosphate consumption (Goldman and Brewer,
1980):

PIC=−0.5.

(
(1AT −1 [NO3] −1 [PO4])

1t

)
(1)

In order to evaluate biological contributions to the inor-
ganic carbon system it was necessary to first account for the
exchange of CO2 between the seawater and the overlying
mesocosm atmosphere (CO2(ex)). Gas exchange was calcu-
lated according to Delille et al. (2005) further employing the
chemical enhancement factors of Kuss and Schneider (2004).

Net community production (NCP) was calculated from
temporal changes in CT allowing for modifications due to
PIC production or dissolution and net CO2 gas exchange
thus:

NCP=−

(
1CT

1t

)
+ 0.5.

(
(1AT −1 [NO3] −1 [PO4])

1t

)
+

CO2(ex)

1t

(2)

Removal of the contributions of net calcification and air-sea
CO2 exchange gives the net perturbation of the inorganic car-
bon system from community biological activity – the sum
of autotrophic and heterotrophic processes within the mixed
layer. Comparison of the inferred net organic production and
nutrient uptake rates gives the pelagic community molar sto-
ichiometry changes as a response to changing CO2.

2.3 Statistical analysis

Statistical analyses were performed on data from all meso-
cosms. The design of the statistical treatments followed a
typical repeated measurement scheme with an outer covari-
ate as the treatment. The response (yij ) was observed for
each particular treatment (treatij ) at timej=0, ...,ni within
the i’th mesocosm,i=1, ..., m. Appropriate to the form
of the relationship to be tested both linear and non-linear
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Fig. 1. Temporal development of the carbon dioxide variables and nutrient concentrations within the mesocosm upper mixed layers:(A)
partial pressure of carbon dioxide;(B) total dissolved carbon dioxide;(C) Total alkalinity;(D) Nitrate;(E) Phosphate; and(F) Silicate. The
mean treatment values (350, 700 and 1050µatm), with standard deviation, are represented by the green, grey and red lines, respectively.

mixed models were applied to the treatment data (Pinheiro
and Bates, 2000).

2.3.1 Logistic mixed effect model (L-NLME)

The logistic relationship was estimated using the self-starting
algorithm of SSlogis of the R-library nlme (Pinheiro and
Bates, 2000). This relationship was applied for both NCP
and PIC as response variable (yij ) against corresponding day.

The logistic relationship follows:

yij =
φ1i

1 + exp
[
−(dayij−φ2i)/φ3i

] + εij (3)

Whereφ1i is the asymptote,φ2i is the xmid andφ3i is the
scale. The residual component followed a normal distribu-
tion, εij∼N(0, σ 2). The mixed effect element is included in
the parameterφi=β+bi wherebi is the cluster-specific ran-
dom effect,bi∼N(0, 9), andβ is the fixed effect. The treat-
ment effects are included throughφi=β+γ xi+bi , wherexi

is the contrast matrix corresponding to the factorial treatment
vector.
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Fig. 2. Calculated carbon dioxide system variables within the meso-
cosm upper mixed layers:(A) Carbonate ion concentration;(B) sat-
uration state of calcite (�); and(C) pHT . The colour assignment of
treatment is as in Fig. 1.

2.3.2 Asymptotic mixed effect model (A-NLME)

An asymptotic relationship was assumed when a sigmoidal
relationship were inappropriate. The self-starting algorithm
SSasymp (Pinheiro and Bates, 2000) was used for the rela-
tionship ofdPO4, as response (yij ), against NCP, following
the relationship:

yij = φ1i + (φ2i − φ1i) exp
[
− exp(φ3i)NCPij

]
(4)

Whereφ1 is the asymptote,φ2 is the intercept andφ3 is the
logarithm of the rate constant.

2.3.3 Linear mixed model (LME)

For the relationship betweendNO3 as the response (yij )

against NCP as predictor it was sufficient with a linear mixed
effect model (Pinheiro and Bates, 2000):

yij = β0 + b0i + βiNCPij + β2treat1,i,j + β3treat2,ij

+β4NCPij treat1,ij + β5NCPij treat2,ij + εij (5)

3 Results

3.1 Temporal evolution of the carbon dioxide system

In accordance with the agreement for the PeECE special is-
sue, only treatment means are represented in this study –
except the statistical analyses which were performed on the
data from individual mesocosm enclosures. Daily treatment
means, with standard deviations, of seawaterpCO2, CT and
nutrient concentrations for the mixed layers in the three per-
turbation scenarios are shown in Fig. 1.

Once the scenario CO2 concentrations had been reached
in the seawater, only the atmospheric concentrations over
the water were maintained at the prescribed treatment level
and the seawater CO2 system was allowed to respond as
in a naturally occurring plankton bloom. There is a clear
treatment dependant response inpCO2 (Fig. 1a). Under the
1×CO2 scenario,pCO2 dropped by 102µatm by the end of
the bloom stage (Day 12), whilstpCO2 reductions were 335
and 570µatm in the 2× and 3×CO2 scenarios, respectively.
Similarly, the CT reductions also show the same order of re-
sponse (Fig. 1b). Under the 1×CO2 treatment, CT showed
a reduction of 94µmol kg−1, increasing to 107µmol kg−1

for 2×CO2 and to 118µmol kg−1 for 3×CO2. Initial con-
centrations of AT (Fig. 1c) were higher in the 3×CO2 treat-
ment corresponding with the higher initial salinity (Schulz
et al., 2008). Changes in AT throughout the bloom stage
indicated a modest treatment response before Day 10 with
reductions in AT of 21, 23.5 and 24.8µmol kg−1 (1×CO2
through 3×CO2 treatments). Total alkalinity increased af-
ter the bloom peak in the 2× and 3× CO2 treatments but
remained constant in the 1× CO2 treatment.

The absolute change in carbonate ion [CO2−

3 ] concentra-
tions, on the other hand, showed no treatment dependence
and increased by 50, 52 and 49µmol kg−1 in the low to high
treatments, respectively (Fig. 2a). Correspondingly, as� (the
saturation state of calcium carbonate) is controlled mainly by
[CO2−

3 ], there were similarly increases in the calcite satura-
tion state; 1.2, 1.27 and 1.19 (Fig. 2b). Seawater pH (pHT )

values, however, increased the most in the 3×CO2 treatment
from 7.64 to 7.96 (1pH=0.32); under the 2×CO2 scenario
the pH increased from 7.81 to 8.07 (1pH=0.26) and in the
1×CO2 treatment from 8.11 to 8.27 (1pH=0.16).
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Fig. 3. The main contributors to changes in the inorganic carbon concentration throughout the experiment(A) Cumulative particulate
inorganic carbon (PIC) production and(B) net community production (NCP). The contribution of CO2 air-sea gas exchange to the net CT
change was small (<1%) and not shown. The colour assignment of treatment is as in Fig. 1.

There was no significant difference in particulate inorganic
carbon (PIC) production between CO2 treatments (L-NLME,
p=0.77, n=170) (Fig. 3a). The dominant calcifier in the
bloom was the prymesiophyteEmiliania Huxleyi(Paulino et
al., 2008) and PIC production increased to a maximum of
15µmol kg−1 on Day 10 corresponding to the start of the
demise of theEmiliania Huxleyipopulation (Paulino et al.,
2008).

Net community production (NCP) (Fig. 3b), the net or-
ganic carbon production, contributed the most to the changes
in inorganic carbon dioxide shown in Fig. 1b with contri-
butions to the CT changes from PIC and air-sea CO2 ex-
change (not shown) of only 15–20%. The cumulative NCP
has a maximum on Day 12 and shows a clear treatment
response with maximum production, relative to Day 2 (L-
NLME, p<0.001,n=170). The 3×CO2 treatment produced
110µmol kg−1, falling to 96µmol kg−1 and 80µmol kg−1

in the 2×CO2 and 1×CO2 treatments. After Day 12 there
is a fall in calculated NCP with further treatment divergence
in NCP until the end of the experiment - again favouring the
3×CO2 treatment.

3.2 Temporal evolution of nutrients

The treatment dependant changes in the major nutrients ni-
trate, phosphate and silicate are shown in Fig. 1c–e. Both
nutrient uptake and the timing of nutrient minima showed
no dependency on CO2 treatment although there were inter-
treatment variations in the planktonic assemblages (Paulino
et al., 2008). Silicate was not added during the experi-
mental set-up, however a residual concentration of about
3µmol kg−1 was inherited from the fjord water used to fill
the mesocosm enclosures. Silicate concentrations dropped
sharply due to diatom uptake and reached a minimum on day
9–10. Phosphate concentrations showed only modest reduc-
tions until day 5 after which rapid uptake led to a minimum

on day 11. From the onset of the experiment, concentrations
of nitrate diminished at a steady rate until Day 12 then de-
clined slowly until the end of the experiment.

The stoichiometry of net community inorganic nutrient to
calculated organic carbon uptake is shown in Fig. 4. As ex-
pected, with the measured nutrient concentrations exhibiting
no scenario dependence, there is little deviation in nutrient
stoichiometry between treatments. In the pre-bloom period,
until day 5, there is a greater uptake of nitrate to phosphate
relative to the Redfield ratio (16:1) (Redfield et al., 1963).
In the initial stage of the bloom, relative phosphate uptake
increases rapidly on Day 6. Thereafter, the system behaves
very close to Redfieldian until the end of the bloom when N:P
rose slowly to a final cumulative value of 21 in all treatments.

Nitrate uptake is high compared to silicate uptake until
Day 4, after which the diatom bloom started (Paulino et al.,
2008) and silicate was consumed at about 1:1 with nitrate un-
til silicate reached a first minimum on Day 7. There followed
a small peak in silicate concentration on Day 8 (Fig. 1f) after
which silicate became depleted on Day 9–10.

In contrast to the nutrient stoichiometric ratios, there are
significant treatment dependant differences between the car-
bon to nitrate (C:N) (LME,p<0.001,n=170) (Fig. 4c, g)
and carbon to phosphate (C:P) ratios (A-NLME,p<0.001,
n=170) (Fig. 4d, h). Overconsumption of carbon results
in a higher C:N uptake ratio under higher CO2 exposures.
Cumulative C:N uptake was higher in the 3×CO2 scenario
throughout the entire bloom, quickly reaching a peak of 7.5–
8.25 by Day 6 and remaining at this level until Day 12.
The pre-bloom responses in the 1× and 2×CO2 treatments
were similar until day 5 after which the 2×CO2 treatment in-
creased C:N uptake to 7.1. A similar order of response was
seen in the C:P ratio with the 3× treatment showing a greater
carbon overconsumption throughout the experiment. By the
height of the bloom, the cumulative C:N:P stoichiometry of

www.biogeosciences.net/5/1517/2008/ Biogeosciences, 5, 1517–1527, 2008
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Fig. 4. Net community nutrient stoichiometric uptake ratios referenced to Day 2. Illustrated are the respective daily changes and parameter-
parameter relationships for nitrate to phosphate(A, E); silicate to nitrate(B, F); organic carbon to nitrate(C, G); and organic carbon to
phosphate(D, H). The black line represents the conventional Redfield ratio (Redfield et al., 1963) (E, G, H)) and a silicate-nitrate relationship
of 0.95:1 from the mean of diatom species Si/N reported in Table 3 of Brezinski (1985) (0.95:1±0.4) (F). The colour assignment of treatment
is as in Fig. 1.
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net organic production increased with CO2 treatment from
1:6.3:121 to 1:7.1:144 to 1:8.25:168. In contrast to the C:N
response, the C:P increased significantly in the post-bloom
phase.

4 Discussion

4.1 Modification of the carbonate system

As changes to AT (including contributions from nutrient al-
kalinity) were similar and low and gas exchange minimal in
all treatments, modifications to CT were mainly due to or-
ganic carbon production. As such, the greatest changes were
related to the treatment dependant carbon overconsumption
with increasing uptake with increasing initialpCO2. The
effect onpCO2 due to the greater carbon uptake is exacer-
bated due to the low buffer capacity of the high CO2 sea-
water resulting in a rapid reduction ofpCO2 in the 3×CO2
treatment. The opposite response is seen with pHT with the
largest increases found in the 3×CO2 scenario. Due to the
weakly buffered system in a future ocean, pelagic ecosys-
tems will undergo greater seasonal changes in their ambient
CO2 fields. Increasing CO2 will reach a point where changes
to the carbonate system will move outside the contemporary
“carbonate system envelope” and accordingly, in this experi-
ment, at no point did any of the calculated carbonate system
variables in the future 2×CO2 and 3×CO2 scenarios overlap
with the range of the contemporary 1×CO2 scenario.

4.2 Calcification

The growth and health of many calcifying marine organisms
have been shown to respond to the saturation state of CaCO3
(�calcite) in seawater (e.g. Gattuso et al., 1998; Riebesell et
al., 2000; Langdon et al., 2003; Kleypas et al., 2006; Delille
et al., 2005; Langer et al., 2006). The dominant calcifier dur-
ing the experiment was the prymesiophyteEmiliania Huxleyi
which is common to the Norwegian fjords and open waters
of the Norwegian and Barents Sea. Calcification inEmilia-
nia Huxleyihas been shown to be controlled by light, nutri-
ent (especially phosphate) and carbonate ion concentrations
and calcite saturation state (see review in Zondervan, 2007).
The photon flux density (PFD) concentrations throughout the
experiment (Schulz et al., 2008) always exceeded the thresh-
old for saturation of 150–300µmol photons m−2 s−1 found
by Nielsen (1997) and Zondervan et al. (2002) and there-
fore it is assumed that there was no light limitation on cal-
cification. In this study there was no treatment difference
in nutrient utilisation although the concentrations ofEmilia-
nia Huxleyivaried between treatments (Paulino et al., 2008).
Merico et al. (2006) postulated that the seawater carbonate
ion concentration could be a control on the onset of calcifi-
cation and Delille et al. (2005) showed that calcification was
delayed by 1 day during a 2×CO2 treatment compared to the

contemporary treatment. This study does not find any rela-
tionship between [CO2−

3 ] and the timing or degree of cal-
cification. Further, although the [CO2−

3 ] and�calcite values
showed marked inter-treatment variations throughout the ex-
periment there was no difference in cumulative net commu-
nity calcification by the peak of the bloom as also identified
by Schulz et al. (2008) using direct measurements of PIC.
This finding varies from the results of Delille et al. (2005)
who reported a 40% reduction in PIC production between
1×CO2 and 2×CO2 treatments. Conversely, this study does
not show the promotion of higher calcification with increas-
ing CO2 as found by Langer et al. (2006).

The peak concentrations ofEmiliania Huxleyiin this study
were 4–6×106 cells L−1 (Paulino et al., 2008) which is rep-
resentative of the concentrations found in the North Atlantic
and Norwegian Sea (Tyrrell and Merico, 2004). The Delille
et al. (2005) experiment had much higher concentrations (4–
6×107 cells L−1) more representative of the intense blooms
found in the Norwegian Fjords (Tyrrell and Merico, 2004).
Extrapolating the Delille et al. (2005) calcification response
to the PeECE III study cell numbers translates to a pre-
dicted reduction in PIC production of 6µmol kg−1 (1×CO2–
2×CO2 treatment). This corresponds to a change in carbon-
ate alkalinity of 12µmol kg−1 well within the measurement
precision of the current methodology. A closer look atEmil-
iania Huxleyii concentrations reveals that there was an in-
crease in cell numbers (Paulino et al., 2008), perhaps facili-
tated through lower virus (EhV) concentration (Larsen et al.,
2008), with increasing CO2. Therefore, the cells in the higher
CO2 treatments may have been healthier and thus able to cal-
cify more efficiently. A further artefact of the experimental
design was the lack of deep water total alkalinity measure-
ments. The small salinity changes throughout the experiment
(Schulz et al., 2008) suggest a potential input of AT from be-
low the pycnocline which are accounted for in the inverse
method.

4.3 Carbon consumption and nutrient stoichiometry

Elemental stoichiometry of biological production in the sur-
face ocean controls, to a great extent, nutrient balance and
cycling of the global ocean. Ocean nutrient stoichiometry is
controlled on short timescales by the resource allocation in
marine organisms (e.g. Redfield et al., 1963; Klausmeier et
al., 2004) and on longer scales by continental nutrient supply
(Broecker, 1982). The degree of biogeochemical connectiv-
ity between the surface and the interior ocean is also con-
trolled by the rate and stoichiometry of sedimenting mate-
rial. In this work, molar stoichiometric nutrient uptake ratios
are inferred from the uptake of dissolved inorganic nutrients
and thus reflect the community balance at a particular time.
This method, therefore, cannot discriminate species specific
uptake as suggested by Klausmeier et al. (2004) but may be
used to characterise distinct patterns in community nutrient
balance under differing CO2 regimes.

www.biogeosciences.net/5/1517/2008/ Biogeosciences, 5, 1517–1527, 2008
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Overconsumption of carbon relative to nutrient supply has
been reported in several studies of the planktonic response
to increased CO2 (Riebesell et al., 1993, 2000; Banse, 1994;
Delille at al., 2005; Engel et al., 2005). The increase in car-
bon uptake is usually seen at the end of the bloom from TEP
production in response to nutrient stress (Engel, 2002; En-
gel et al., 2004). Hein and Sand-Jensen (1997) reported an
immediate (2 h) increase in primary production in relation to
increased CO2 concentrations. Changes in dissolved aque-
ous CO2 may determine the phytoplankton cell size distri-
bution (Engel et al., 2008). Egge et al. (2007) also reported
increased primary production, based on in situ14C incuba-
tions, in this study in the higher CO2 treatments towards the
peak of the bloom. However, the overconsumption derived
from chemical uptake estimations is seen from the onset of
the experiment and is proportional to the initial treatment
CO2 concentration (see also Riebesell et al., 2007). Schulz
et al. (2008) report no changes to the stoichiometry of dis-
solved and particulate organic matter. This apparent con-
tradiction may be due to an increase in the carbon exported
from the mixed layer relative to nutrient concentration in the
high CO2 treatments. Allgaier et al. (2008) state that the ap-
parent increase in DOC production did not stimulate bacte-
rial secondary production due to N and P limitation reported
by Tanaka et al. (2008) and that TEP production, DOC exu-
dation and ensuing enhanced sedimentation must have been
high. The products and processes of export production were
poorly sampled in the waters below the pycnocline and thus
no concrete explanation is possible of the fate of the miss-
ing organic carbon. Schulz et al. (2008) suggest from am-
monium measurements that there must have been significant
remineralisation in the lower 1.5 m of the mesocosms, espe-
cially in the high CO2 treatments fuelled by increased carbon
export. The role of benthic organisms living on the walls of
the mesocosm enclosures, which has been shown to impact
biogeochemical cycling during mesocosm studies (Chen et
al., 1997; Berg et al., 1999; Petersen et al., 1999), was not
studied.

4.4 Consequences for ecosystem functioning, ocean bio-
geochemical cycling and atmospheric CO2 control

The elemental stoichiometry of biological export has an im-
portant role in controlling atmospheric CO2 concentrations
(Broecker, 1982; Volk and Hoffart, 1985; Omta et al., 2006).
From first principles, the stoichiometry of osmotroph up-
take is transferred to the standing stock of pelagic produc-
tion. Non-Redfield signatures of biological production have
been documented in the surface ocean (Sambrotto et al.,
1993; Anderson and Sarmiento, 1994; Falck and Anderson,
2005; Koeve, 2006) and at depth (Körtzinger et al., 2001;
Pahlow and Riebesell, 2000). This study has indicated an
increase in the carbon:nutrient stoichiometry of pelagic os-
motroph productivity in a high CO2 world. If the PeECE
results are representative of global productivity, with an ef-

ficient transfer of this carbon overconsumption to depth, the
increase in atmospheric CO2 proposed by the end of the cen-
tury may be reduced by 58µatm (Riebesell et al., 2007).
The efficiency of carbon-nutrient perturbations in the upper
ocean on atmospheric CO2 depends on the rate and ultimate
depth of sedimentation which has been shown to be signif-
icantly controlled by the ballast of the sedimenting material
(Klaas and Archer, 2002). The ballast is mainly dependant
on the proportion of CaCO3 to particulate organic carbon
(CaCO3:POC) and has been used to test the sensitivity of
changes to the carbonate pump on atmospheric CO2 (Heinze,
2004; Ridgwell et al., 2007). Previous studies have identi-
fied a reduction in the calcification rate of pelagic calcifiers
(summarised in Ridgwell et al., 2007). Calcification was in-
sensitive to CO2 level in this study and Schulz et al. (2008)
show that there was increased export of organic carbon from
the mixed layer under the 3×CO2 treatment, suggesting a
lowering of the ballast effect. This would suggest that the at-
mospheric control proposed by Riebesell et al. (2007) would
be diminished if there were no compensatory processes to
offset the reductions in the ballast effect. However, Engel
et al. (2008) show that there was an increase in the cell size
during the PeECE II experiment. This cell size change with
increases in TEP production and, thus potentially higher ag-
gregation of particulates shown to be a response of similar
pelagic plankton communities (Engel, 2002; Engel et al.,
2004), may be a mechanism to increase sedimentation rates
in a high CO2 environments.

Carbon overconsumption by osmotrophs changes the nu-
tritional quality of food for zooplankton. Lower growth, pro-
ductivity and fecundity has been documented in zooplank-
ton fed on phytoplankton grown under high CO2 (Sterner
and Elser, 2002; Urabe et al., 2003,; Anderson et al., 2005).
Carotenuto et al. (2007) hypothesise that the high C:N uptake
during the PeECE III study reduced recruitment of zooplank-
ton nauplii. Changes to the ecological structure of pelagic
community will also control the export of stoichiometric sig-
nals through changes to the size structure and ballast of sed-
imenting material.

There exists now a large array of experimental data, from
laboratory and mesocosm studies of individual species and
ecosystem studies, on ecological and biogeochemical re-
sponses to ocean acidification. The requirement now is for
detailed statistical metaanalysis to breakdown the complex-
ity and often contradiction of experimental results, to iden-
tify the dominant controls and responses to ocean acidifica-
tion. With this information, the observationalists and mod-
ellers, presently identifying large contemporary changes in
the oceanic carbon sinks (e.g. Schuster and Watson, 2007;
Canadell et al., 2007), will be able to focus efforts on the
oceanic processes sensitive to changes in the CO2 system.
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