2,013 research outputs found

    Feasibility of intraventricular administration of etoposide in patients with metastatic brain tumours

    Get PDF
    As the systemic administration of etoposide is effective in the treatment of relapsed and metastatic brain tumours, a pilot trial was designed to study the feasibility of intraventricular administration of etoposide in such patients. 14 patients aged 2.1 to 33.2 years were treated with intraventricular etoposide simultaneously with either oral or intravenous chemotherapy with trofosfamide or carboplatin and etoposide. In 59 courses (1–12/patient) 0.5 mg etoposide was administered daily via an indwelling subcutaneous reservoir for 5 consecutive days every 2–5 weeks over a period of 0–11 months. During 15 courses in 5 patients serial CSF samples were obtained and etoposide levels were determined by reversed-phase HPLC. Side effects included transient headache and bacterial meningitis, each during 2 courses. Pharmacokinetic data analysis in the CSF (11 courses, 4 patients) revealed a terminal half-life of 7.4±1.2 hours and an AUC of 25.0 ± 9.5 μg h ml–1(mean ± standard deviation). The volume of distribution at steady state and total clearance exhibited a large interindividual variability with mean values of 0.16 l and 0.46 ml min–1respectively. Intraventricularly administered etoposide is well tolerated. CSF peak levels exceed more than 100-fold those achieved with intravenous infusions. Further studies should be focused on optimizing the dose and schedule and on determining the effectiveness of intraventricularly administered etoposide. © 2001 Cancer Research Campaign http://www.bjcancer.co

    The Morphology of the Expanding Ejecta of V2491 Cygni (2008 N.2)

    Full text link
    Determining the evolution of the ejecta morphology of novae provides valuable information on the shaping mechanisms in operation at early stages of the nova outburst. Understanding such mechanisms has implications for studies of shaping for example in proto-Planetary Nebulae. Here we perform morpho-kinematical studies of V2491 Cyg using spectral data to determine the likely structure of the ejecta and its relationship to the central system and shaping mechanisms. We use Shape to model different morphologies and retrieve their spectra. These synthetic spectra are compared with observed spectra to determine the most likely morphology giving rise to them, including system inclination and expansion velocity of the nova ejecta. We find the best fit remnant morphology to be that of polar blobs and an equatorial ring with an implied inclination of 8012+3^{+3}_{-12} degrees and an maximum expansion velocity of the polar blobs of 3100100+200^{+200}_{-100} km/s and for the equatorial ring 2700100+200^{+200}_{-100} km/s. This inclination would suggest that we should observe eclipses which will enable us to determine more precisely important parameters of the central binary. We also note that the amplitude of the outburst is more akin to the found in recurrent nova systems.Comment: 9 pages, 7 figures, accepted for publication in MNRA

    On the Progenitor System of Nova V2491 Cygni

    Full text link
    Nova V2491 Cyg is one of just two detected pre-outburst in X-rays. The light curve of this nova exhibited a rare "re-brightening" which has been attributed by some as the system being a polar, whilst others claim that a magnetic WD is unlikely. By virtue of the nature of X-ray and spectroscopic observations the system has been proposed as a recurrent nova, however the adoption of a 0.1 day orbital period is generally seen as incompatible with such a system. In this research note we address the nature of the progenitor system and the source of the 0.1 day periodicity. Through the combination of Liverpool Telescope observations with published data and archival 2MASS data we show that V2491 Cyg, at a distance of 10.5 - 14 kpc, is likely to be a recurrent nova of the U Sco-class; containing a sub-giant secondary and an accretion disk, rather than accretion directly onto the poles. We show that there is little evidence, at quiescence, supporting a ~ 0.1 day periodicity, the variation seen at this stage is likely caused by flickering of a re-established accretion disk. We propose that the periodicity seen shortly after outburst is more likely related to the outburst rather than the - then obscured - binary system. Finally we address the distance to the system, and show that a significantly lower distance (~ 2 kpc) would result in a severely under-luminous outburst, and as such favour the larger distance and the recurrent nova scenario.Comment: 5 pages, 3 images, accepted for publication in A&A as a research not

    Swift observations of the 2006 outburst of the recurrent nova RS Ophiuchi: I. Early X-ray emission from the shocked ejecta and red giant wind

    Get PDF
    RS Ophiuchi began its latest outburst on 2006 February 12. Previous outbursts have indicated that high velocity ejecta interact with a pre-existing red giant wind, setting up shock systems analogous to those seen in Supernova Remnants. However, in the previous outburst in 1985, X-ray observations did not commence until 55 days after the initial explosion. Here we report on Swift observations covering the first month of the 2006 outburst with the Burst Alert (BAT) and X-ray Telescope (XRT) instruments. RS Oph was clearly detected in the BAT 14-25 keV band from t=0 to t6t\sim6 days. XRT observationsfrom 0.3-10 keV, started at 3.17 days after outburst. The rapidly evolving XRT spectra clearly show the presence of both line and continuum emission which can be fitted by thermal emission from hot gas whose characteristic temperature, overlying absorbing column, [NH]W[N_H]_W, and resulting unabsorbed total flux decline monotonically after the first few days. Derived shock velocities are in good agreement with those found from observations at other wavelengths. Similarly, [NH]W[N_H]_W is in accord with that expected from the red giant wind ahead of the forward shock. We confirm the basic models of the 1985 outburst and conclude that standard Phase I remnant evolution terminated by t10t\sim10 days and the remnant then rapidly evolved to display behaviour characteristic of Phase III. Around t=26 days however, a new, luminous and highly variable soft X-ray source began to appear whose origin will be explored in a subsequent paper.Comment: 20 pages, 4 figures (2 updated), accepted by Ap
    corecore