346 research outputs found

    The steering gaits of sperm

    No full text
    Sperm are highly specialized cells, which have been subject to substantial evolutionary pressure. Whereas some sperm features are highly conserved, others have undergone major modifications. Some of these variations are driven by adaptation to mating behaviours or fitness at the organismic level. Others represent alternative solutions to the same task. Sperm must find the egg for fertilization. During this task, sperm rely on long slender appendages termed flagella that serve as sensory antennas, propellers and steering rudders. The beat of the flagellum is periodic. The resulting travelling wave generates the necessary thrust for propulsion in the fluid. Recent studies reveal that, for steering, different species rely on different fundamental features of the beat wave. Here, we discuss some examples of unity and diversity across sperm from different species with a particular emphasis on the steering mechanisms. This article is part of the Theo Murphy meeting issue ‘Unity and diversity of cilia in locomotion and transport’

    Untersuchungen zur Ankopplung von gentechnisch modifizierten HEK293-Zellen an siliziumbasierte Transducer-Materialien

    Get PDF
    Um die elektrische Signalübertragung zwischen biologischen Systemen und Halbleitermaterialien zu untersuchen, beschäftigt sich die aktuelle Forschung in jüngster Zeit mit der direkten Ankopplung von Nervenzellen an Siliziumchips und Metallelektroden. Die Generierung elektrischer Impulse hängt dabei von Ionenkanälen in der Plasmamembran dieser Zellen ab. Mittels molekularbiologischer Verfahren fertigen wir gentechnisch modifizierte HEK 293 Zellen an. Es werden Zellinien hergestellt, die sowohl Dopamin-Rezeptoren, als auch zyklisch nukleotid-gesteuerte Ionenkanäle (CNG Kanäle) konstitutiv exprimieren. Die Dopamin-Rezeptoren erkennen spezifische Botenstoffe (Dopamin) in einer Lösung und erzeugen ein intrazelluläres biochemisches Signal. Es kommt zum Anstieg der intrazellulären Konzentration des Botenstoffes cAMP. Die CNG-Kanäle werden durch dieses zyklische Nukleotid direkt geöffnet. Mono- und divalente Kationen fließen durch den geöffneten Kanal in die Zelle. Die Zelle wird dabei elektrisch erregt und das Membranpotential ändert sich. Die Änderung des Membranpotentials soll als Meßgröße mit Hilfe eines Halbleiterchips gemessen werden. Gegenwärtig wird die bioelektronische Schnittstelle zwischen Zelle und Halbleiterstruktur im einzelnen charakterisiert. Dabei werden unterschiedliche Übertragungsmechanismen - an Hand von Mikroelektroden und kapazitiven Feldeffektstrukturen - auf der Basis von planarem, strukturiertem und porösem Silizium untersucht. Um die Haftung der Zellen auf den Siliziumchips zu verbessern, wurden die Chipoberflächen mittels verschiedener Methoden aktiviert (Sauerstoffplasmabehandlung, Poly-L-lysin, Laminin). Die Ergebnisse dieser Untersuchungen, sowie einleitende Ergebnisse, die die Signalübertragung an der Zell/Silizium-Schnittstelle betreffen, werden präsentiert und diskutiert

    Structure of the Nucleotide Radical Formed during Reaction of CDP/TTP with the E441Q-α2β2 of E. coli Ribonucleotide Reductase

    Get PDF
    The Escherichia coli ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside diphosphates to deoxynucleotides and requires a diferric-tyrosyl radical cofactor for catalysis. RNR is composed of a 1:1 complex of two homodimeric subunits: α and β. Incubation of the E441Q-α mutant RNR with substrate CDP and allosteric effector TTP results in loss of the tyrosyl radical and formation of two new radicals on the 200 ms to min time scale. The first radical was previously established by stopped flow UV/vis spectroscopy and pulsed high field EPR spectroscopy to be a disulfide radical anion. The second radical was proposed to be a 4′-radical of a 3′-keto-2′-deoxycytidine 5′-diphosphate. To identify the structure of the nucleotide radical [1′-[superscript 2]H], [2′-[superscript 2]H], [4′-[superscript 2]H], [5′-[superscript 2]H], [U−[superscript 13]C, [superscript 15]N], [U−[superscript 15]N], and [5,6 -[superscript 2]H] CDP and [β-[superscript 2]H] cysteine-α were synthesized and incubated with E441Q-α2β2 and TTP. The nucleotide radical was examined by 9 GHz and 140 GHz pulsed EPR spectroscopy and 35 GHz ENDOR spectroscopy. Substitution of [superscript 2]H at C4′ and C1′ altered the observed hyperfine interactions of the nucleotide radical and established that the observed structure was not that predicted. DFT calculations (B3LYP/IGLO-III/B3LYP/TZVP) were carried out in an effort to recapitulate the spectroscopic observations and lead to a new structure consistent with all of the experimental data. The results indicate, unexpectedly, that the radical is a semidione nucleotide radical of cytidine 5′-diphosphate. The relationship of this radical to the disulfide radical anion is discussed.National Institutes of Health (U.S.) (GM29595)(EB002804)(EB002026

    TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations

    Get PDF
    TURBOMOLE is a collaborative, multi-national software development project aiming to provide highly efficient and stable computational tools for quantum chemical simulations of molecules, clusters, periodic systems, and solutions. The TURBOMOLE software suite is optimized for widely available, inexpensive, and resource-efficient hardware such as multi-core workstations and small computer clusters. TURBOMOLE specializes in electronic structure methods with outstanding accuracy–cost ratio, such as density functional theory including local hybrids and the random phase approximation (RPA), GW-Bethe–Salpeter methods, second-order Møller–Plesset theory, and explicitly correlated coupled-cluster methods. TURBOMOLE is based on Gaussian basis sets and has been pivotal for the development of many fast and low-scaling algorithms in the past three decades, such as integral-direct methods, fast multipole methods, the resolution-of-the-identity approximation, imaginary frequency integration, Laplace transform, and pair natural orbital methods. This review focuses on recent additions to TURBOMOLE’s functionality, including excited-state methods, RPA and Green’s function methods, relativistic approaches, high-order molecular properties, solvation effects, and periodic systems. A variety of illustrative applications along with accuracy and timing data are discussed. Moreover, available interfaces to users as well as other software are summarized. TURBOMOLE’s current licensing, distribution, and support model are discussed, and an overview of TURBOMOLE’s development workflow is provided. Challenges such as communication and outreach, software infrastructure, and funding are highlighted

    TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations

    Get PDF
    TURBOMOLE is a collaborative, multi-national software development project aiming to provide highly efficient and stable computational tools for quantum chemical simulations of molecules, clusters, periodic systems, and solutions. The TURBOMOLE software suite is optimized for widely available, inexpensive, and resource-efficient hardware such as multi-core workstations and small computer clusters. TURBOMOLE specializes in electronic structure methods with outstanding accuracy–cost ratio, such as density functional theory including local hybrids and the random phase approximation (RPA), GW-Bethe–Salpeter methods, second-order Møller–Plesset theory, and explicitly correlated coupled-cluster methods. TURBOMOLE is based on Gaussian basis sets and has been pivotal for the development of many fast and low-scaling algorithms in the past three decades, such as integral-direct methods, fast multipole methods, the resolution-of-the-identity approximation, imaginary frequency integration, Laplace transform, and pair natural orbital methods. This review focuses on recent additions to TURBOMOLE’s functionality, including excited-state methods, RPA and Green’s function methods, relativistic approaches, high-order molecular properties, solvation effects, and periodic systems. A variety of illustrative applications along with accuracy and timing data are discussed. Moreover, available interfaces to users as well as other software are summarized. TURBOMOLE’s current licensing, distribution, and support model are discussed, and an overview of TURBOMOLE’s development workflow is provided. Challenges such as communication and outreach, software infrastructure, and funding are highlighted

    Hyperpolarization-activated and cyclic nucleotide-gated channels are differentially expressed in juxtaglomerular cells in the olfactory bulb of mice

    Get PDF
    In the olfactory bulb, input from olfactory receptor neurons is processed by neuronal networks before it is relayed to higher brain regions. In many neurons, hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels generate and control oscillations of the membrane potential. Oscillations also appear crucial for information processing in the olfactory bulb. Four channel isoforms exist (HCN1–HCN4) that can form homo- or heteromers. Here, we describe the expression pattern of HCN isoforms in the olfactory bulb of mice by using a novel and comprehensive set of antibodies against all four isoforms. HCN isoforms are abundantly expressed in the olfactory bulb. HCN channels can be detected in most cell populations identified by commonly used marker antibodies. The combination of staining with marker and HCN antibodies has revealed at least 17 different staining patterns in juxtaglomerular cells. Furthermore, HCN isoforms give rise to an unexpected wealth of co-expression patterns but are rarely expressed in the same combination and at the same level in two given cell populations. Therefore, heteromeric HCN channels may exist in several cell populations in vivo. Our results suggest that HCN channels play an important role in olfactory information processing. The staining patterns are consistent with the possibility that both homomeric and heteromeric HCN channels are involved in oscillations of the membrane potential of juxtaglomerular cells
    • …
    corecore