474 research outputs found
Hydrodynamical analysis of single inclusive spectra and Bose-Einstein correlations for at 160 AGeV
We present the first analysis of preliminary data for at 160
using 3+1-dimensional relativistic hydrodynamics. We find excellent agreement
with the rapidity spectra of negative hadrons and the correlation measurements.
The data indicates a large amount of stopping; of the invariant energy
of the collision is thermalized and of the baryons are contained in the
central fireball. Within our model this implies that a quark-gluon-plasma of
lifetime 3.4 was formed.Comment: 13 pages, 5 Postscript figures (attached to this file as compressed
and uuencoded Postscript file
Lifetimes and Sizes from Two-Particle Correlation Functions
We discuss the Yano-Koonin-Podgoretskii (YKP) parametrization of the
two-particle correlation function for azimuthally symmetric expanding sources.
We derive model-independent expressions for the YKP fit parameters and discuss
their physical interpretation. We use them to evaluate the YKP fit parameters
and their momentum dependence for a simple model for the emission function and
propose new strategies for extracting the source lifetime. Longitudinal
expansion of the source can be seen directly in the rapidity dependence of the
Yano-Koonin velocity.Comment: 15 pages REVTEX, 2 figures included, submitted to Phys. Lett. B,
Expanded discussion of disadvantages of standard HBT fit and of Fig.
Universal Pion Freeze-out Phase-Space Density
Results on the pion freeze-out phase-space density in sulphur-nucleus, Pb-Pb
and pion-proton collisions at CERN-SPS are presented. All heavy-ion reactions
are consistent with the thermal Bose-Einstein distrtibution f=1/(exp(E/T)-1) at
T~120 MeV, modified for expansion. Pion-proton data are also consistent with f,
but at T~180 MeV.Comment: 1 page, 1 figure; 98' report for GSI-Darmstad
Transition from a phase-segregated state to single-phase incommensurate sodium ordering in Na_xCoO_2 with x \approx 0.53
Synchrotron X-ray diffraction investigations of two single crystals of
Na_xCoO_2 from different batches with composition x = 0.525-0.530 reveal
homogeneous incommensurate sodium ordering with propagation vector (0.53 0.53
0) at room-temperature. The incommensurate (qq0) superstructure exists between
220 K and 430 K. The value of q varies between q = 0.514 and 0.529, showing a
broad plateau at the latter value between 260 K and 360 K. On cooling, unusual
reversible phase segregation into two volume fractions is observed. Below 220
K, one volume fraction shows the well-known commensurate orthorhombic x = 0.50
superstructure, while a second volume fraction with x = 0.55 exhibits another
commensurate superstructure, presumably with a 6a x 6a x c hexagonal supercell.
We argue that the commensurate-to-incommensurate transition is an intrinsic
feature of samples with Na concentrations x = 0.5 + d with d ~ 0.03.Comment: Corrected/improved versio
Approximation Algorithms for the Capacitated Domination Problem
We consider the {\em Capacitated Domination} problem, which models a
service-requirement assignment scenario and is also a generalization of the
well-known {\em Dominating Set} problem. In this problem, given a graph with
three parameters defined on each vertex, namely cost, capacity, and demand, we
want to find an assignment of demands to vertices of least cost such that the
demand of each vertex is satisfied subject to the capacity constraint of each
vertex providing the service. In terms of polynomial time approximations, we
present logarithmic approximation algorithms with respect to different demand
assignment models for this problem on general graphs, which also establishes
the corresponding approximation results to the well-known approximations of the
traditional {\em Dominating Set} problem. Together with our previous work, this
closes the problem of generally approximating the optimal solution. On the
other hand, from the perspective of parameterization, we prove that this
problem is {\it W[1]}-hard when parameterized by a structure of the graph
called treewidth. Based on this hardness result, we present exact
fixed-parameter tractable algorithms when parameterized by treewidth and
maximum capacity of the vertices. This algorithm is further extended to obtain
pseudo-polynomial time approximation schemes for planar graphs
Hydrodynamical analysis of symmetric nucleus-nucleus collisions at CERN/SPS energies
We present a coherent theoretical study of ultrarelativistic heavy-ion data
obtained at the CERN/SPS by the NA35/NA49 Collaborations using 3+1-dimensional
relativistic hydrodynamics. We find excellent agreement with the rapidity
spectra of negative hadrons and protons and with the correlation measurements
in two experiments: at 200 and at 160 (preliminary
results). Within our model this implies that for () a
quark-gluon-plasma of initial volume 174 (24 ) with a lifetime 3.4
(1.5 ) was formed. It is found that the Bose-Einstein correlation
measurements do not determine the maximal effective radii of the hadron sources
because of the large contributions from resonance decay at small momenta. Also
within this study we present an NA49 acceptance corrected two-pion
Bose-Einstein correlation function in the invariant variable, .Comment: 21 pages, 11 Postscript figures (1 File, 775654 Bytes, has to be
requested for submission via e.mail from [email protected]
pi-/pi+ ratio in heavy ions collisions: Coulomb effect or chemical equilibration?
We calculate the pi-/pi+ ratio for Pb+Pb at CERN/SPS energies and for Au+Au
at BNL/AGS energies using a (3+1) dimensional hydrodynamical model. Without
consideration of Coulomb effect an enhancement of this ratio at low mt is found
compatible with that observed in these experiments. Our calculations are based
on previous (3+1) dimensional hydrodynamical simulations (HYLANDER), which
described many other aspects of experimental data. In this model the observed
enhancement is a consequence of baryon and strangeness conservation and of
chemical equilibration of the system and is caused by the decay of produced
hyperons, which leads to a difference in the total number of positive and
negative pions as well. Based on the same approach, we also present results for
the pi-/pi+ ratio for S+S (CERN/SPS) collisions, where we find a similar
effect. The absence of the enhancement of the pi-/pi+ ratio in the S+S data
presented by the NA44 Collaboration, if confirmed, could indicate that chemical
equilibration has not yet been estabilished in this reaction.Comment: 8 pages and 2 figures, submmited to Phys. Lett. B. This reviewed
version (Nov.29,1996) contains more details about the model simulated
efficiency considering the experimental detection conditions. Other small
modifications were mad
Monte Carlo vs. Pencil Beam based optimization of stereotactic lung IMRT
<p>Abstract</p> <p>Background</p> <p>The purpose of the present study is to compare finite size pencil beam (fsPB) and Monte Carlo (MC) based optimization of lung intensity-modulated stereotactic radiotherapy (lung IMSRT).</p> <p>Materials and methods</p> <p>A fsPB and a MC algorithm as implemented in a biological IMRT planning system were validated by film measurements in a static lung phantom. Then, they were applied for static lung IMSRT planning based on three different geometrical patient models (one phase static CT, density overwrite one phase static CT, average CT) of the same patient. Both 6 and 15 MV beam energies were used. The resulting treatment plans were compared by how well they fulfilled the prescribed optimization constraints both for the dose distributions calculated on the static patient models and for the accumulated dose, recalculated with MC on each of 8 CTs of a 4DCT set.</p> <p>Results</p> <p>In the phantom measurements, the MC dose engine showed discrepancies < 2%, while the fsPB dose engine showed discrepancies of up to 8% in the presence of lateral electron disequilibrium in the target. In the patient plan optimization, this translates into violations of organ at risk constraints and unpredictable target doses for the fsPB optimized plans. For the 4D MC recalculated dose distribution, MC optimized plans always underestimate the target doses, but the organ at risk doses were comparable. The results depend on the static patient model, and the smallest discrepancy was found for the MC optimized plan on the density overwrite one phase static CT model.</p> <p>Conclusions</p> <p>It is feasible to employ the MC dose engine for optimization of lung IMSRT and the plans are superior to fsPB. Use of static patient models introduces a bias in the MC dose distribution compared to the 4D MC recalculated dose, but this bias is predictable and therefore MC based optimization on static patient models is considered safe.</p
Thermal analysis of hadron multiplicities from relativistic quantum molecular dynamics
Some questions arising in the application of the thermal model to hadron
production in heavy ion collisions are studied. We do so by applying the
thermal model of hadron production to particle yields calculated by the
microscopic transport model RQMD(v2.3). We study the bias of incomplete
information about the final hadronic state on the extraction of thermal
parameters.It is found that the subset of particles measured typically in the
experiments looks more thermal than the complete set of stable particles. The
hadrons which show the largest deviations from thermal behaviour in RQMD(v2.3)
are the multistrange baryons and antibaryons. We also looked at the influence
of rapidity cuts on the extraction of thermal parameters and found that they
lead to different thermal parameters and larger disagreement between the RQMD
yields and the thermal model.Comment: 12 pages, 2 figures, uses REVTEX, only misprint and stylistic
corrections, to appear in Physical Review
Various Models for Pion Probability Distributions from Heavy-Ion Collisions
Various models for pion multiplicity distributions produced in relativistic
heavy ion collisions are discussed. The models include a relativistic
hydrodynamic model, a thermodynamic description, an emitting source pion laser
model, and a description which generates a negative binomial description. The
approach developed can be used to discuss other cases which will be mentioned.
The pion probability distributions for these various cases are compared.
Comparison of the pion laser model and Bose-Einstein condensation in a laser
trap and with the thermal model are made. The thermal model and hydrodynamic
model are also used to illustrate why the number of pions never diverges and
why the Bose-Einstein correction effects are relatively small. The pion
emission strength of a Poisson emitter and a critical density
are connected in a thermal model by , and this fact
reduces any Bose-Einstein correction effects in the number and number
fluctuation of pions. Fluctuations can be much larger than Poisson in the pion
laser model and for a negative binomial description. The clan representation of
the negative binomial distribution due to Van Hove and Giovannini is discussed
using the present description. Applications to CERN/NA44 and CERN/NA49 data are
discussed in terms of the relativistic hydrodynamic model.Comment: 12 pages, incl. 3 figures and 4 tables. You can also download a
PostScript file of the manuscript from
http://p2hp2.lanl.gov/people/schlei/eprint.htm
- …