54 research outputs found

    "Single nucleotide polymorphisms of the OPG/RANKL system genes in primary hyperparathyroidism and their relationship with bone mineral density"

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary hyperparathyroidism (PHPT) affects mainly cortical bone. It is thought that parathyroid hormone (PTH) indirectly regulates the activity of osteoclasts by means of the osteoprotegerin/ligand of the receptor activator of nuclear factor-κβ (OPG/RANKL) system. Several studies have confirmed that <it>OPG </it>(osteoprotegerin) and <it>RANKL </it>(ligand of the receptor activator of nuclear factor-κβ) loci are determinants of bone mineral density (BMD) in the general population. The aim of this study is to analyze the relationship between fractures and BMD and the rs3102735 (163 A/G), rs3134070 (245 T/G) and rs2073618 (1181 G/C) SNPs of the <it>OPG </it>and the rs2277438 SNP of the <it>RANKL</it>, in patients with sporadic PHPT.</p> <p>Methods</p> <p>We enrolled 298 Caucasian patients with PHPT and 328 healthy volunteers in a cross-sectional study. We analyzed anthropometric data, history of fractures or renal lithiasis, biochemical determinants including markers for bone remodelling, BMD measurements in the lumbar spine, total hip, femoral neck and distal radius, and genotyping for the SNPs to be studied.</p> <p>Results</p> <p>Regarding the age of diagnosis, BMI, menopause status, frequency of fractures or renal lithiasis, we found no differences between genotypes in any of the SNPs studied in the PHPT group. Significant lower BMD in the distal radius with similar PTH levels was found in the minor allele homozygotes (GG) compared to heterozygotes and major allele homozygotes in both <it>OPG </it>rs3102735 (163 A/G) and <it>OPG </it>rs3134070 (245 T/G) SNPs in those with PHPT compared to control subjects. We found no differences between genotypes of the <it>OPG </it>rs2073618 (1181 G/C) SNP with regard to BMD in the PHPT subjects. In the evaluation of rs2277438 SNP of the <it>RANKL </it>in PHPT patients, we found a non significant trend towards lower BMD in the 1/3 distal radius and at total hip in the minor allele homocygotes (GG) genotype group versus heterocygotes and major allele homocygotes (AA).</p> <p>Conclusions</p> <p>Our study provides the first evaluation of the relationship between SNPs of the <it>OPG/RANK </it>system and sporadic PHPT. Subjects with PHPT and minor homocygote genotype (GG) for the <it>OPG </it>rs3102735 (163 A/G) and <it>OPG </it>rs3134070 (245 T/G) SNPs have lower BMD in the distal radius, and this association does not appear to be mediated by differences in PTH serum levels.</p

    Tribological behaviour of microalloyed and conventional C–Mn rail steels in a pure sliding condition

    Get PDF
    This paper compares the tribological behaviour of microalloyed rail steel with conventional C–Mn rail steel under different test conditions (load, temperature and humidity). Pin-on-disc tribological tests were performed inside a climate chamber under different loads (20, 30 and 40 N), relative humidity (15, 55 and 70%) and temperatures (20 and 40 ℃). After the friction and wear tests, the worn surfaces were analysed using both confocal and scanning electron microscopies. The results obtained show that the use of microalloyed steel in railway applications under severe conditions (high loads and humidity) could lead to increased service life of the rails and could extend the time between maintenance operations

    Experimental and theoretical study of electronic and hyperfine properties of hydrogenated anatase (TiO2_2): defects interplay and thermal stability

    Full text link
    In this study we report on the results from emission 57^{57}Fe Mo¨{\"o}ssbauer Spectroscopy experiments, using dilute 57^{57}Mn implantation into pristine (TiO2_2) and hydrogenated anatase held at temperatures between 300-700 K. Results of the electronic structure and local environment are complemented with ab-initio calculations. Upon implantation both Fe2+^{2+} and Fe3+^{3+} are observed in pristine anatase, where the latter demonstrates the spin-lattice relaxation. The spectra obtained for hydrogenated anatase show no Fe3+^{3+} contribution, suggesting that hydrogen acts as a donor. Due to the low threshold, hydrogen diffuses out of the lattice. Thus showing a dynamic behavior on the time scale of the 57^{57}Fe 14.4 keV state. The surrounding oxygen vacancies favor the high-spin Fe2+^{2+} state. The sample treated at room temperature shows two distinct processes of hydrogen motion. The motion commences with the interstitial hydrogen, followed by switching to the covalently bound state. Hydrogen out-diffusion is hindered by bulk defects, which could cause both processes to overlap. Supplementary UV-Vis and electrical conductivity measurements show an improved electrical conductivity and higher optical absorption after the hydrogenation. X-ray photoelectron spectroscopy at room temperature reveals that the sample hydrogenated at 573 K shows presence of both Ti3+^{3+} and Ti2+^{2+} states. This could imply that a significant amount of oxygen vacancies and -OH bonds are present in the samples. Theory suggests that in the anatase sample implanted with Mn(Fe), probes were located near equatorial vacancies as next-nearest-neighbours, whilst a metastable hydrogen configuration is responsible for the annealing behavior
    corecore