1,729 research outputs found

    The diffusion coefficient of propagating fronts with multiplicative noise

    Get PDF
    Recent studies have shown that in the presence of noise both fronts propagating into a metastable state and so-called pushed fronts propagating into an unstable state, exhibit diffusive wandering about the average position. In this paper we derive an expression for the effective diffusion coefficient of such fronts, which was motivated before on the basis of a multiple scale ansatz. Our systematic derivation is based on the decomposition of the fluctuating front into a suitably positioned average profile plus fluctuating eigenmodes of the stability operator. While the fluctuations of the front position in this particular decomposition are a Wiener process on all time scales, the fluctuations about the time averaged front profile relax exponentially.Comment: 4 page

    The universality class of fluctuating pulled fronts

    Get PDF
    It has recently been proposed that fluctuating ``pulled'' fronts propagating into an unstable state should not be in the standard KPZ universality class for rough interface growth. We introduce an effective field equation for this class of problems, and show on the basis of it that noisy pulled fronts in {\em d+1} bulk dimensions should be in the universality class of the {\em (d+1)+1}D KPZ equation rather than of the {\em d+1}D KPZ equation. Our scenario ties together a number of heretofore unexplained observations in the literature, and is supported by previous numerical results.Comment: 4 pages, 2 figure

    Gravitating dyons and the Lue-Weinberg bifurcation

    Get PDF
    Gravitating t'Hooft-Polyakov magnetic monopoles can be constructed when coupling the Georgi-Glashow model to gravitation. For a given value of the Higgs boson mass, these gravitating solitons exist up to a critical value of the ratio of the vector meson mass to the Planck mass. The critical solution is characterized by a degenerate horizon of the metric. As pointed out recently by Lue and Weinberg, two types of critical solutions can occur, depending on the value of the Higgs boson mass. Here we investigate this transition for dyons and show that the Lue and Weinberg phenomenon is favorized by the presence of the electric-charge degree of freedom.Comment: RevTeX, 6 pages, 8 figure

    Fluctuating "Pulled" Fronts: the Origin and the Effects of a Finite Particle Cutoff

    Get PDF
    Recently it has been shown that when an equation that allows so-called pulled fronts in the mean-field limit is modelled with a stochastic model with a finite number NN of particles per correlation volume, the convergence to the speed vv^* for NN \to \infty is extremely slow -- going only as ln2N\ln^{-2}N. In this paper, we study the front propagation in a simple stochastic lattice model. A detailed analysis of the microscopic picture of the front dynamics shows that for the description of the far tip of the front, one has to abandon the idea of a uniformly translating front solution. The lattice and finite particle effects lead to a ``stop-and-go'' type dynamics at the far tip of the front, while the average front behind it ``crosses over'' to a uniformly translating solution. In this formulation, the effect of stochasticity on the asymptotic front speed is coded in the probability distribution of the times required for the advancement of the ``foremost bin''. We derive expressions of these probability distributions by matching the solution of the far tip with the uniformly translating solution behind. This matching includes various correlation effects in a mean-field type approximation. Our results for the probability distributions compare well to the results of stochastic numerical simulations. This approach also allows us to deal with much smaller values of NN than it is required to have the ln2N\ln^{-2}N asymptotics to be valid.Comment: 26 pages, 11 figures, to appear in Phys. rev.

    Emergence of pulled fronts in fermionic microscopic particle models

    Full text link
    We study the emergence and dynamics of pulled fronts described by the Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation in the microscopic reaction-diffusion process A + A A$ on the lattice when only a particle is allowed per site. To this end we identify the parameter that controls the strength of internal fluctuations in this model, namely, the number of particles per correlated volume. When internal fluctuations are suppressed, we explictly see the matching between the deterministic FKPP description and the microscopic particle model.Comment: 4 pages, 4 figures. Accepted for publication in Phys. Rev. E as a Rapid Communicatio

    A COMMUNITY BASED CROSS-SECTIONAL STUDY: INCREASING PREVALENCE OF TYPE 2 DIABETES AMONG RURAL ADULT POPULATION OF KARNATAKA, INDIA

    Get PDF
    A community based cross-sectional study in the age group 25 years and above conducted at the field area of primary health centre Chakenahalli, Hassan district, Karnataka, India. The population was similar in characteristics regarding occupation, socio-economic status and food habits. Total of 626 subjects were included by multi-stage sampling. Information collected by the interviewers through face to face interview, after informed consent. The individuals were assessed on anthropometric parameters and screening was done by Random Blood Glucose (RBG) with a standardized technique; diagnosis of type 2 diabetes done by WHO criteria. Prevalence of diabetes was found in 11.3% males and 15% females, altogether the total prevalence was 13.09% with 8.79% self reported cases of diabetes . Hypertension was associated with 25.6% diabetic subjects. It was also observed that 28.1% of study population had BMI ≥ 25

    Front Propagation and Diffusion in the A <--> A + A Hard-core Reaction on a Chain

    Get PDF
    We study front propagation and diffusion in the reaction-diffusion system A \leftrightharpoons A + A on a lattice. On each lattice site at most one A particle is allowed at any time. In this paper, we analyze the problem in the full range of parameter space, keeping the discrete nature of the lattice and the particles intact. Our analysis of the stochastic dynamics of the foremost occupied lattice site yields simple expressions for the front speed and the front diffusion coefficient which are in excellent agreement with simulation results.Comment: 5 pages, 5 figures, to appear in Phys. Rev.

    Free fatty acids link metabolism and regulation of the insulin-sensitizing fibroblast growth factor-21

    Get PDF
    OBJECTIVE—Fibroblast growth factor (FGF)-21 improves insulin sensitivity and lipid metabolism in obese or diabetic animal models, while human studies revealed increased FGF-21 levels in obesity and type 2 diabetes. Given that FGF-21 has been suggested to be a peroxisome proliferator–activator receptor (PPAR) –dependent regulator of fasting metabolism, we hypothesized that free fatty acids (FFAs), natural agonists of PPAR, might modify FGF-21 levels. RESEARCH DESIGN AND METHODS—The effect of fatty acids on FGF-21 was investigated in vitro in HepG2 cells. Within a randomized controlled trial, the effects of elevated FFAs were studied in 21 healthy subjects (13 women and 8 men). Within a clinical trial including 17 individuals, the effect of insulin was analyzed using an hyperinsulinemic-euglycemic clamp and the effect of PPAR activation was studied subsequently in a rosiglitazone treatment trial over 8 weeks. RESULTS—Oleate and linoleate increased FGF-21 expression and secretion in a PPAR-dependent fashion, as demonstrated by small-interfering RNA–induced PPAR knockdown, while palmitate had no effect. In vivo, lipid infusion induced an increase of circulating FGF-21 in humans, and a strong correlation between the change in FGF-21 levels and the change in FFAs was observed. An artificial hyperinsulinemia, which was induced to delineate the potential interaction between elevated FFAs and hyperinsulinemia, revealed that hyperinsulinemia also increased FGF-21 levels in vivo, while rosiglitazone treatment had no effect. CONCLUSIONS—The results presented here offer a mechanism explaining the induction of the metabolic regulator FGF-21 in the fasting situation but also in type 2 diabetes and obesity

    Kinematic reduction of reaction-diffusion fronts with multiplicative noise: Derivation of stochastic sharp-interface equations

    Get PDF
    We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in the presence of multiplicative noise. We discuss the connection between the reaction-diffusion Langevin-like field equations and the kinematic (eikonal) description in terms of a stochastic moving-boundary or sharp-interface approximation. We find that the effective noise is additive and we relate its strength to the noise parameters in the original field equations, to first order in noise strength, but including a partial resummation to all orders which captures the singular dependence on the microscopic cutoff associated to the spatial correlation of the noise. This dependence is essential for a quantitative and qualitative understanding of fluctuating fronts, affecting both scaling properties and nonuniversal quantities. Our results predict phenomena such as the shift of the transition point between the pushed and pulled regimes of front propagation, in terms of the noise parameters, and the corresponding transition to a non-KPZ universality class. We assess the quantitative validity of the results in several examples including equilibrium fluctuations, kinetic roughening, and the noise-induced pushed-pulled transition, which is predicted and observed for the first time. The analytical predictions are successfully tested against rigorous results and show excellent agreement with numerical simulations of reaction-diffusion field equations with multiplicative noise.Comment: 17 pages, 6 figure

    Data mining and wireless sensor network for agriculture pest/disease predictions

    Get PDF
    Data driven precision agriculture aspects, particularly the pest/disease management, require a dynamic crop-weather data. An experiment was conducted in a semi-arid region to understand the crop-weather-pest/disease relations using wireless sensory and field-level surveillance data on closely related and interdependent pest (Thrips) - disease (Bud Necrosis) dynamics of groundnut crop. Data mining techniques were used to turn the data into useful information/knowledge/relations/trends and correlation of crop-weather-pest/ disease continuum. These dynamics obtained from the data mining techniques and trained through mathematical models were validated with corresponding surveillance data. Results obtained from 2009 & 2010 kharif seasons (monsoon) and 2009-10 & 2010-11 rabi seasons (post monsoon) data could be used to develop a real to near real-time decision support system for pest/disease predictions
    corecore