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ABSTRACT
Recent studies have shown that in the presence of noise both fronts propagating into a metastable
state and so-called pushed fronts propagating into an unstable state, exhibit di�usive wandering
about the average position. In this paper we derive an expression for the e�ective di�usion coe�cient
of such fronts, which was motivated before on the basis of a multiple scale ansatz. Our systematic
derivation is based on the decomposition of the 
uctuating front into a suitably positioned average
pro�le plus 
uctuating eigenmodes of the stability operator. While the 
uctuations of the front
position in this particular decomposition are a Wiener process on all time scales, the 
uctuations
about the time averaged front pro�le relax exponentially.
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I. INTRODUCTION

One of the aspects of front propagation that have
been studied in the literature in recent years is the
e�ect of 
uctuations on propagating fronts [1{4]. In
particular it has been found that in the presence of
noise both one-dimensional fronts between a stable and a
metastable state (\bistable fronts") and so-called pushed

fronts which propagate into an unstable state [5], exhibit
a di�usive wandering about their average position [4].
This contrasts with the 
uctuation behavior of so-called
pulled fronts propagating into an unstable state which is
subdi�usive [6]. In this paper we shall consider only the
case of pushed and bistable fronts, however.
Recently, Armero et al. [4] derived an expression for

the e�ective di�usion coe�cient of a pushed front in the
stochastic �eld equation

@�

@t
=

@2�

@x2
+ f(�) + "1=2g(�)�(x; t) (1)

with a noise term whose correlations are

�(x; t) = 0; (2)

�(x; t)�(x0; t0) = 2C(jx� x0j=�)�(t� t0): (3)

In (1), f is a nonlinear function of the �eld � with a sta-
ble state at � = 1 and either a (meta)stable or unstable
state at � = 0 and g(�) is some other general nonlinear
function. In (2) and (3) the overbar denotes an average
over the realizations of the noise. In order that our noise
of Stratonovich type is well-de�ned, we have introduced
a spatial cuto� in the noise correlation function (3) (see
[4] for further details).
The derivation in [4] of the e�ective front di�usion coef-

�cientDf relied on a small-noise stochastic multiple scale
analysis that was based on the idea that the mean square
displacement of the front about its average position was
slow relative to the deterministic relaxation of the front.
The basic idea was that only the low-frequency compo-
nents of the noise are responsible for the front wandering,
so that the high-frequency components, which renormal-
ize the front shape and its velocity, could be implicitly in-
tegrated out. This led to an ansatz for the relative scaling
of fast and slow time variables where the small parame-
ter governing the separation of time scales was the di�u-
sion coe�cient Df of the front itself. The method then
selfconsistently provided an explicit prediction for Df .
The main weakness of the approach was that the above
coarse-graining procedure could not be carried out ex-
plicitly, since while there is a separation of time scales for
the average quantities, a scale separation scheme is not
natural for the 
uctuating quantities. Hence the deriva-
tion had to rely on an uncontrolled ansatz. In this Brief
Report we therefore reconsider this problem. We justify

the previously derived result for Df with a systematic
small-noise expansion based on decomposing the motion
of the front into a di�usive motion of the properly de-
�ned front position plus 
uctuations about the average
front pro�le. Technically the 
uctuating front position
is de�ned by requiring that the 
uctuations about the
mean front pro�le are orthogonal to the (left) translation
mode. This derivation shows that the previous multiple
scale ansatz is not quite adequate, and it will clarify the
connection between the separation of time scales invoked
in Ref. [4], the small noise expansion and the existence
of a �nite gap in the linearized evolution operator. The
key point of our new derivation is the fact that there is
a unique choice for the collective coordinate X(t) of the
front pro�le to be a memoryless Markovian process, and
that the 
uctuations about the average pro�le then relax
exponentially. This relaxation can be deduced from the
spectrum of the linearization operator about the average
front pro�le. In addition our method provides a general
strategy to address the problem of 
uctuations of fronts
and other coherent structures.

II. DERIVATION OF THE EFFECTIVE

DIFFUSION COEFFICIENT

We can rewrite Eq. (1) in terms of a noise term R whose
average R is zero and a deterministic renormalized part,

@�

@t
=

@2�

@x2
+ h(�) + "1=2 R(�; x; t); (4)

using Novikov's Theorem, as discussed in [4]. In Eq. (4),

h(�) = f(�) + "C(0)g0(�)g(�); (5)

R(�; x; t) = g(�)�(x; t) � "1=2C(0)g0(�)g(�); (6)

where C(0) is of order ��1, so that Eq. (3) yields a
delta correlation in space in the limit � ! 0 [7]. The
main idea of the derivation is to introduce a collective
coordinate X(t) for the position of the front. Of course
there are various choices for the position X(t), but as we
shall show a particular choice makes the equations quite
transparent. We decompose the 
uctuating �eld � as

� = �0(� �X(t)) + �1(� �X(t); t): (7)

Here �0 is the solution of the ODE for the shape of a
deterministic front with velocity vR, the velocity of the
deterministic front associated with Eq. (4) with R = 0
(the subscript R on vR reminds us that the front speed is
determined by h(�) rather than f(�), and hence is renor-
malized due to the presence of the noise). In other words,
�0 satis�es

0 =
d2�0(�)

d�2
+ vR

@�0(�)

@�
+ h(�0): (8)
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While �0 is a non-
uctuating quantity, �1 is a stochastic
�eld which contains the 
uctuations about �0. In the
above, � = x � vRt is the proper variable for a deter-
ministic front moving with the asymptotic velocity vR,
but note that in (7) the �elds are written in terms of the
shifted variable

�X = � �X(t) = x� vRt+X(t); (9)

whereX(t) is the rapidly 
uctuating front position whose
explicit de�nition in terms of a spatially averaged front
pro�le is given below.
As is well known, the derivation of a moving boundary

approximation for deterministic equations (see e.g. [8,9]
and references therein) normally proceeds by projecting
onto the zero mode. Indeed associated with the front
solution �0 of (8) is a zero mode of the stability operator

L =
@2

@�2
+ vR

@

@�
+ h0(�0); (10)

which is obtained by linearizing about �0. This zero
mode expresses translational invariance, and indeed im-
plies that

L�
(0)
R = 0 , �

(0)
R =

d�0
d�

: (11)

In our case the operator L is not self-adjoint, since

vR 6= 0; as a result the left eigenmode �
(0)
L is di�erent

from �
(0)
R , but it is known to be (see e.g. [4,9]):

L+�
(0)
L = 0 , �

(0)
L = evR�

d�0
d�

: (12)

As we mentioned above, a particular de�nition of the
position X(t) is especially convenient: we take X(t) de-
�ned implicitly by the requirement that the 
uctuating
�eld �1 is orthogonal to the left zero mode. Indeed, de�n-
ing

hA(�)B(�)i =

Z 1

�1

d�A(�)B(�); (13)

we require

h�
(0)
L �1(�; t)i

=

Z
d�evR�

d�0
d�

�
�� �0(� �X(t)

�
= 0: (14)

Note that at any moment, the 
uctuating front position
X(t) is de�ned in terms of weighted spatial average of the

uctuating �eld �.
Upon substitution of Eq. (7) into (4) and linearization

in �1 (which is justi�ed for small noise), we obtain

@�1
@t

= L�1 � _X(t)
@�0
@�X

+R(�0; �; t): (15)

Note that we have also approximated R(�; �X ; t) by
R(�0; �; t), which again is correct to lowest order in the
noise.
In addition to the zero mode, the operator L will in

general have right eigenmodes �
(l)
R with eigenvalues ��l

L�
(l)
R = ��l�

(l)
R ; l 6= 0 (16)

and with associated left eigenfunctions �
(l)
L = evR��

(l)
R .

Our convention to have the eigenvalues ��l anticipates
that the dynamically relevant front solution is stable,
so that all eigenvalues �l are positive. Moreover both
for fronts between a stable and a metastable state and
for pushed fronts propagating into an unstable state, the
spectrum is known to be gapped [10,11], i.e. the smallest
eigenvalue is strictly greater than zero [10,11].

Since �1 is orthogonal to �
(0)
L , we can expand �1 in

terms of the eigenmodes �
(l)
R (l � 1) of L as

�1(�X ; t) =
X
l 6=0

al(t)�
(l)
R (�X ): (17)

Substitution of this expansion into (15) then yields upon

projection onto the zero mode �
(0)
L

_X(t) = "1=2
h�

(0)
L R(�0; �; t)i

h�
(0)
L �

(0)
R i

: (18)

Taking the square of this result, integrating and averag-
ing over the noise,

X2(t) = 2Df t =

Z t

0

dt0
Z t

0

dt00 _X(t0) _X(t00); (19)

then yields with (3), (11) and (12)

Df = "

R
d�e2vR�(d�0=d�)

2g2(�0)

[
R
d�evR�(d�0=d�)2]2

: (20)

This is precisely the result derived earlier in [4]. To
lowest order in the present small-noise expansion, the av-
erage front pro�le is simply �0. However, notice that �0
contains a dependence on � through C(0) in h(�). The
parameter C(0) must be considered as an independent
one, so that the result (20) has to be interpreted as to
�rst order in " but to all orders in "=�.
The above derivation allows us to also obtain the re-

laxation of a 
uctuation about the average. Indeed,
upon substituting (17) into (15) and projecting onto the

left zero modes, using h�
(n)
L �

(m)
R i = �nm for normalized

eigenmodes, we obtain to lowest order

dal
dt

= ��lal + "1=2h�
(l)
L Ri (21)

as terms _X(t)d�1=d� are of higher order in ". Note that
each mode is damped and has its noise strength weighted
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by �
(l)
L . One can derive from here in a straightforward

way the mean square 
uctuations about the average pro-
�le.
We �nally note that our discussion clari�es the di�-

culty of using a separation of time scales argument for
the derivation of the e�ective di�usion coe�cient: the
collective coordinate X(t) is a memoryless Markov pro-
cess, and hence the changes in the position have zero cor-
relation time while the average of X2(t) changes slowly.
The coe�cients al(t), on the other hand, have a �nite
correlation time and hence are correlated on timescales
in between the one of instantaneous position X(t) and
the mean square wandering X2(t).

III. CONCLUDING REMARKS

We have reported an improved derivation of the di�u-
sion coe�cient of propagating pushed fronts with multi-
plicative noise, previously found in Ref. [4]. The present
derivation is more transparent and elegant since it is fully
explicit and based on standard projection techniques.
The key point is the identi�cation of a de�nition of the
front position which naturally implies the di�usive wan-
dering of the front, and avoids invoking an uncontrolled
hypothesis in addition to the basic assumption of small
noise strength. This has also clari�ed that the time scale
separation used in Ref. [4] can be traced back to the
small noise approximation together with the existence of
a �nite gap in the spectrum of the linearized evolution
operator. All these considerations can be generalized to
the e�ect of 
uctuations on other types of coherent struc-
tures.
Our derivation of the solvability expression (20) for

Df of a propagating front shows that the collective co-
ordinate X(t) responds instantaneously to the noise R:
There is no memory term in (18), so that X(t) is Marko-
vian and, more precisely, it coincides with the Wiener
process (to lowest order in the noise strength). We stress
that this is only true for our particular de�nition of X(t)
in terms of the orthogonality of �1 to the left zero mode.
For any other de�nition, like the usual one to de�ne the
front position as X(t) =

R
d� �(�), X(t) will not be a

Markov process, and would show only di�usive behavior
at su�ciently long time scales.
As a byproduct of our derivation we have also ob-

tained an explicit expression for the relaxation behavior
of the 
uctuations about the mean front pro�le. Not sur-
prisingly, the larger the gap in the spectrum, the faster

the relaxation. As is well known, in models in which
there is a transition from the pushed regime to the pulled
regime, the gap closes upon approaching the transition
from the pushed side [10]. Hence the relaxation becomes
slower and slower. As is discussed in [10], in the pulled
regime the spectrum is gapless and this leads to anoma-
lous power law relaxation of deterministic fronts towards
their asymptotic speed and shape. As a result pulled
fronts cannot be described by a moving boundary ap-
proximation [9] and in the presence of 
uctuations they
exhibit subdi�usive wandering [6] in one dimension and
anomalous scaling in higher dimensions [12,13].
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