1,692 research outputs found

    An augmented moment method for stochastic ensembles with delayed couplings: II. FitzHugh-Nagumo model

    Full text link
    Dynamics of FitzHugh-Nagumo (FN) neuron ensembles with time-delayed couplings subject to white noises, has been studied by using both direct simulations and a semi-analytical augmented moment method (AMM) which has been proposed in a recent paper [H. Hasegawa, E-print: cond-mat/0311021]. For NN-unit FN neuron ensembles, AMM transforms original 2N2N-dimensional {\it stochastic} delay differential equations (SDDEs) to infinite-dimensional {\it deterministic} DEs for means and correlation functions of local and global variables. Infinite-order recursive DEs are terminated at the finite level mm in the level-mm AMM (AMMmm), yielding 8(m+1)8(m+1)-dimensional deterministic DEs. When a single spike is applied, the oscillation may be induced if parameters of coupling strength, delay, noise intensity and/or ensemble size are appropriate. Effects of these parameters on the emergence of the oscillation and on the synchronization in FN neuron ensembles have been studied. The synchronization shows the {\it fluctuation-induced} enhancement at the transition between non-oscillating and oscillating states. Results calculated by AMM5 are in fairly good agreement with those obtained by direct simulations.Comment: 15 pages, 3 figures; changed the title with correcting typos, accepted in Phys. Rev. E with some change

    Resource-driven Substructural Defeasible Logic

    Full text link
    Linear Logic and Defeasible Logic have been adopted to formalise different features relevant to agents: consumption of resources, and reasoning with exceptions. We propose a framework to combine sub-structural features, corresponding to the consumption of resources, with defeasibility aspects, and we discuss the design choices for the framework

    The radial arrangement of the human chromosome 7 in the lymphocyte cell nucleus is associated with chromosomal band gene density

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ Springer-Verlag 2008.In the nuclei of human lymphocytes, chromosome territories are distributed according to the average gene density of each chromosome. However, chromosomes are very heterogeneous in size and base composition, and can contain both very gene-dense and very gene-poor regions. Thus, a precise analysis of chromosome organisation in the nuclei should consider also the distribution of DNA belonging to the chromosomal bands in each chromosome. To improve our understanding of the chromatin organisation, we localised chromosome 7 DNA regions, endowed with different gene densities, in the nuclei of human lymphocytes. Our results showed that this chromosome in cell nuclei is arranged radially with the gene-dense/GC-richest regions exposed towards the nuclear interior and the gene-poorest/GC-poorest ones located at the nuclear periphery. Moreover, we found that chromatin fibres from the 7p22.3 and the 7q22.1 bands are not confined to the territory of the bulk of this chromosome, protruding towards the inner part of the nucleus. Overall, our work demonstrates the radial arrangement of the territory of chromosome 7 in the lymphocyte nucleus and confirms that human genes occupy specific radial positions, presumably to enhance intra- and inter-chromosomal interaction among loci displaying a similar expression pattern, and/or similar replication timing

    Near-field interactions between metal nanoparticle surface plasmons and molecular excitons in thin-films: part I: absorption

    Get PDF
    In this and the following paper (parts I and II, respectively), we systematically study the interactions between surface plasmons of metal nanoparticles (NPs) with excitons in thin-films of organic media. In an effort to exclusively probe near-field interactions, we utilize spherical Ag NPs in a size-regime where far-field light scattering is negligibly small compared to absorption. In part I, we discuss the effect of the presence of these Ag NPs on the absorption of the embedding medium by means of experiment, numerical simulations, and analytical calculations, all shown to be in good agreement. We observe absorption enhancement in the embedding medium due to the Ag NPs with a strong dependence on the medium permittivity, the spectral position relative to the surface plasmon resonance frequency, and the thickness of the organic layer. By introducing a low index spacer layer between the NPs and the organic medium, this absorption enhancement is experimentally confirmed to be a near field effect In part II, we probe the impact of the Ag NPs on the emission of organic molecules by time-resolved and steady-state photoluminescence measurements

    Microscopic modelling of doped manganites

    Full text link
    Colossal magneto-resistance manganites are characterised by a complex interplay of charge, spin, orbital and lattice degrees of freedom. Formulating microscopic models for these compounds aims at meeting to conflicting objectives: sufficient simplification without excessive restrictions on the phase space. We give a detailed introduction to the electronic structure of manganites and derive a microscopic model for their low energy physics. Focussing on short range electron-lattice and spin-orbital correlations we supplement the modelling with numerical simulations.Comment: 20 pages, 10 figs, accepted for publ. in New J. Phys., Focus issue on Orbital Physic

    Symmetry Analysis of Second Harmonic Generation at Surfaces of Antiferromagnets

    Full text link
    Using group theory we classify the nonlinear magneto-optical response at low-index surfaces of fcc antiferromagnets, such as NiO. Structures consisting of one atomic layer are discussed in detail. We find that optical second harmonic generation is sensitive to surface antiferromagnetism in many cases. We discuss the influence of a second type of magnetic atoms, and also of a possible oxygen sublattice distortion on the output signal. Finally, our symmetry analysis yields the possibility of antiferromagnetic surface domain imaging even in the presence of magnetic unit-cell doubling.Comment: 23 pages, 10 figures incorporated. Accepted to Phys. Rev. B, scheduled for July'9

    Bound state solutions of the Dirac-Rosen-Morse potential with spin and pseudospin symmetry

    Full text link
    The energy spectra and the corresponding two- component spinor wavefunctions of the Dirac equation for the Rosen-Morse potential with spin and pseudospin symmetry are obtained. The ss-wave (κ=0\kappa = 0 state) solutions for this problem are obtained by using the basic concept of the supersymmetric quantum mechanics approach and function analysis (standard approach) in the calculations. Under the spin symmetry and pseudospin symmetry, the energy equation and the corresponding two-component spinor wavefunctions for this potential and other special types of this potential are obtained. Extension of this result to κ0\kappa \neq 0 state is suggested.Comment: 18 page

    Shift in epitope dominance of IgM and IgG responses to Plasmodium falciparum MSP1 block 4

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Plasmodium falciparum </it>merozoite surface protein-1 (MSP1) has been extensively studied as a blood-stage malaria vaccine candidate, with most work focused on the conserved 19 kDa and semi-conserved 42 kDa C-terminal regions (blocks 16-17) and the hypervariable N-terminal repeat region (block 2). However, recent genotyping studies suggest that additional regions of MSP1 may be under selective pressure, including a locus of intragenic recombination designated as block 4 within the 3' region of the gene.</p> <p>Methods</p> <p>The current study examined the antibody response to the two parental and two recombinant forms of block 4 and to blocks 16-17 (3D7) in study populations from Colombia, Papua New Guinea and Cameroon that differ in malaria transmission intensity and ethnic composition.</p> <p>Results</p> <p>IgM and IgG antibodies were detected against parental and recombinant MSP1 block 4 peptides in all three populations. Overall, 32-44% of the individuals produced IgM to one or more of the peptides, with most individuals having IgM antibodies reactive with both parental and recombinant forms. In contrast, IgG seropositivity to block 4 varied among populations (range 15-65%), with the majority of antibodies showing specificity for one or a pair of block 4 peptides. The IgG response to block 4 was significantly lower than that to blocks 16-17, indicating block 4 is subdominant. Antibodies to block 4 and blocks 16-17 displayed distinct IgG subclass biases, with block 4 responses biased toward IgG3 and blocks 16-17 toward IgG1. These patterns of responsiveness were consistently observed in the three study populations.</p> <p>Conclusions</p> <p>Production of antibodies specific for each parental and recombinant MSP1 block 4 allele in different populations exposed to <it>P. falciparum </it>is consistent with balancing selection of the MSP1 block 4 region by the immune response of individuals in areas of both low and high malaria transmission. MSP1 block 4 determinants may be important in isolate-specific immunity to <it>P. falciparum</it>.</p
    corecore