research

An augmented moment method for stochastic ensembles with delayed couplings: II. FitzHugh-Nagumo model

Abstract

Dynamics of FitzHugh-Nagumo (FN) neuron ensembles with time-delayed couplings subject to white noises, has been studied by using both direct simulations and a semi-analytical augmented moment method (AMM) which has been proposed in a recent paper [H. Hasegawa, E-print: cond-mat/0311021]. For NN-unit FN neuron ensembles, AMM transforms original 2N2N-dimensional {\it stochastic} delay differential equations (SDDEs) to infinite-dimensional {\it deterministic} DEs for means and correlation functions of local and global variables. Infinite-order recursive DEs are terminated at the finite level mm in the level-mm AMM (AMMmm), yielding 8(m+1)8(m+1)-dimensional deterministic DEs. When a single spike is applied, the oscillation may be induced if parameters of coupling strength, delay, noise intensity and/or ensemble size are appropriate. Effects of these parameters on the emergence of the oscillation and on the synchronization in FN neuron ensembles have been studied. The synchronization shows the {\it fluctuation-induced} enhancement at the transition between non-oscillating and oscillating states. Results calculated by AMM5 are in fairly good agreement with those obtained by direct simulations.Comment: 15 pages, 3 figures; changed the title with correcting typos, accepted in Phys. Rev. E with some change

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020