110 research outputs found

    Toward a Detailed Description of the Thermally Induced Dynamics of the Core Promoter

    Get PDF
    Establishing the general and promoter-specific mechanistic features of gene transcription initiation requires improved understanding of the sequence-dependent structural/dynamic features of promoter DNA. Experimental data suggest that a spontaneous dsDNA strand separation at the transcriptional start site is likely to be a requirement for transcription initiation in several promoters. Here, we use Langevin molecular dynamic simulations based on the Peyrard-Bishop-Dauxois nonlinear model of DNA (PBD LMD) to analyze the strand separation (bubble) dynamics of 80-bp-long promoter DNA sequences. We derive three dynamic criteria, bubble probability, bubble lifetime, and average strand separation, to characterize bubble formation at the transcriptional start sites of eight mammalian gene promoters. We observe that the most stable dsDNA openings do not necessarily coincide with the most probable openings and the highest average strand displacement, underscoring the advantages of proper molecular dynamic simulations. The dynamic profiles of the tested mammalian promoters differ significantly in overall profile and bubble probability, but the transcriptional start site is often distinguished by large (longer than 10 bp) and long-lived transient openings in the double helix. In support of these results are our experimental transcription data demonstrating that an artificial bubble-containing DNA template is transcribed bidirectionally by human RNA polymerase alone in the absence of any other transcription factors

    Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.

    Get PDF
    The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies

    Quantitative assessment of renal perfusion and oxygenation by invasive probes: basic concepts

    Get PDF
    Renal tissue hypoperfusion and hypoxia are early key elements in the pathophysiology of acute kidney injury of various origins, and may also promote progression from acute injury to chronic kidney disease. Here we describe basic principles of methodology to quantify renal hemodynamics and tissue oxygenation by means of invasive probes in experimental animals. Advantages and disadvantages of the various methods are discussed in the context of the heterogeneity of renal tissue perfusion and oxygenation.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by a separate chapter describing the experimental procedure and data analysis

    Netropsin interactions in the minor groove of d(GGCCAATTGG) studied by a combination of resolution enhancement and ab initio calculations

    No full text
    The structure of the complex between the minor groove binder netropsin and d(GGCCAATTGG) was determined via single-crystal X-ray techniques. The structure was refined to completion using refmac 5.1.24, resulting in a residual R-factor of 20.0% (including 68 water molecules). Using crystal engineering and cryocooling techniques, the resolution could be enhanced to 1.75 angstrom, resulting in an unambiguous determination of the drug conformation and orientation. As previously noticed, bifurcated hydrogen bonds are formed between the amide nitrogen atoms of the drug and the N3 and O2 atoms of A and T base pairs, respectively, clearly cataloging the structure to class I. As the bulky NH2 group on guanine was believed to prevent binding of the drug in the minor groove, the detailed nature of several of the amidinium and guanidinium end contacts were further investigated by ab initio quantum chemical methods

    Branched oligopeptides form nano-capsules with lipid vesicle characteristics

    Get PDF
    In a recent article (Gudlur et al. PLOS ONE, 2012, 7 (9) e45374), we described the special properties of a mixed branched peptide assembly in which equimolar bis(FLIVI)-K-KKKK and bis(FLIVIGSII)-K-KKKK self-associate to form bilayer delimited capsules capable of trapping solutes. These polycationic vesicle-like capsules are readily taken up by epithelial cells in culture, escape or evade the endocytic pathway, and accumulate in the perinuclear region where they persist without any apparent degradation. In this report, we examine the lipidlike properties of this system including initial assembly; solute encapsulation and washing; fusion and resizing by membrane extrusion through polycarbonate filters with defined pore sizes. The resized peptide capsules have uniform diameters in nm size ranges. Once resized, the capsules can be maintained at the new size by storing them at 4 °C. Having the ability to prepare stable uniform nanoscale capsules of desired sizes makes them potentially attractive as biocompatible delivery vehicles for various solutes/drugs
    corecore