157 research outputs found

    The Caledonian mountains. Northern Europe, and their changing ecosystems

    Get PDF
    With the exception of solar conditions, the climate of the Caledonian Mountains, Northern Europe, is influenced more by the nearness to the Atlantic Ocean and the Gulf Stream than by altitude and latitude. The length of the photoperiod during the growing season increases with latitude, although the total solar influx decreases. Heaths composed of species with a boreal distribution are particularly characteristic at low altitudes and latitudes, whereas species with an arctic and arctic-alpine distribution dominate at high altitudes and latitudes. Periodic events in the population dynamics of certain plant and animal species distinguish the ecosystems at high latitudes from those at low latitude. The effects of global change are likely to become most pronounced in the north since the rate at which the ultraviolet-B (UV-B) absorbing ozone layer is being reduced and the increase in concentration of «greenhouse gases» in the atmosphere are both higher in the arctic than in regions further south. Changes in the ecosystems due to increased direct human impacts are also likely to occur in some areas.[fr] À l'exception des conditions solaires, le climat des montagnes dites «Caledonian», au Nord de l'Europe, est beaucoup plus influencé par la proximité de l'Océan Atlantique et le Goulf Stream que par l'altitude ou la latitude. La durée de la photopériode pendant la saison de végétation augmente avec la latitude, tandis que la radiation solaire total s'abaisse. À des altitudes et latitudes basses, les landes riches en espèces à distribution boréale deviennent caractéristiques, tandis que les espèces arctiques et artico-alpines dominent dans les hautes altitudes ou latitudes. Des événements périodiques dans la dynamique de la population de certains animaux ou plantes peuvent distinguer les écosystèmes des hautes latitudes de ceux de basse latitude. Les effets du changement climatique global seraient bien sûr plus prononcés au nord, car d'une part le taux d'absortion de Vultraviolet-B (UV-B) par la couche d'ozone devient plus bas et d'autre part la concentration de gaz à effet de serre est plus forte dans les régions arctiques que plus au sud. De plus, dans certaines régions, il y a de changements dans les écosystèmes dûs à un impact direct croissant des activités humaines. [es] Condiciones solares aparte, el clima de las montañas caledonianas, situadas en el N de Europa, viene condicionado por la cercanía del Océano Atlántico y la corriente del Golfo, más que por la latitud y la altitud. Es sabido que la duración del fotoperíodo en el período de crecimiento vegetativo se incrementa con la latitud, aunque el flujo total solar descienda. Los brezales en cuya composición entran especies de distribución boreal son muy característicos de las bajas altitudes y latitudes. Ahora bien, las perturbaciones periódicas que tienen lugar en la dinámica poblacional de ciertas plantas o animales distinguen los ecosistemas de latitudes elevadas de los que están situados a baja latitud. Sin duda, los efectos del cambio global serán más intensos en el Norte, por cuanto la tasa de absorción de rayos ultravioleta B (UV-B) por parte de la capa de ozono se aminora y el incremento de la concentración de los «gases-invernadero» es consecuentemente mayor en el Ártico que en las zonas más meridionales. Además, en los ecosistemas también se están notando cambios por causa de los crecientes impactos directos de las actividades humanas en ciertas áreas

    Nutrient density of beverages in relation to climate impact

    Get PDF
    The food chain contributes to a substantial part of greenhouse gas (GHG) emissions and growing evidence points to the urgent need to reduce GHGs emissions worldwide. Among suggestions were proposals to alter food consumption patterns by replacing animal foods with more plant-based foods. However, the nutritional dimensions of changing consumption patterns to lower GHG emissions still remains relatively unexplored. This study is the first to estimate the composite nutrient density, expressed as percentage of Nordic Nutrition Recommendations (NNR) for 21 essential nutrients, in relation to cost in GHG emissions of the production from a life cycle perspective, expressed in grams of CO2-equivalents, using an index called the Nutrient Density to Climate Impact (NDCI) index. The NDCI index was calculated for milk, soft drink, orange juice, beer, wine, bottled carbonated water, soy drink, and oat drink. Due to low-nutrient density, the NDCI index was 0 for carbonated water, soft drink, and beer and below 0.1 for red wine and oat drink. The NDCI index was similar for orange juice (0.28) and soy drink (0.25). Due to a very high-nutrient density, the NDCI index for milk was substantially higher (0.54) than for the other beverages. Future discussion on how changes in food consumption patterns might help avert climate change need to take both GHG emission and nutrient density of foods and beverages into account

    Characterization of the interactions of a polycationic, amphiphilic, terminally branched oligopeptide with lipid A and lipopolysaccharide from the deep rough mutant of salmonella minnesota

    Get PDF
    The lipid A and lipopolysaccharide (LPS) binding and neutralizing activities of a synthetic, polycationic, amphiphilic peptide were studied. The branched peptide, designed as a functional analog of polymyxin B, has a six residue hydrophobic sequence, bearing at its N-terminus a penultimate lysine residue whose α- and E-amino groups are coupled to two terminal lysine residues. In fluorescence spectroscopic studies designed to examine relative affinities of binding to the toxin, neutralization of surface charge and fluidization of the acyl domains, the peptide was active, closely resembling the effects of polymyxin B and its nonapeptide derivative; however, the synthetic peptide does not induce phase transitions in LPS aggregates as do polymyxin B and polymyxin B nonapeptide. The peptide was also comparable with polymyxin B in its ability to inhibit LPS-mediated IL-1 and IL-6 release from human peripheral blood mononuclear cells. The synthetic compound is devoid of antibacterial activities and did not induce conductance fluxes in LPS-containing asymmetric planar membranes. These results strengthen the premise that basicity and amphiphilicity are necessary and sufficient physical properties that ascribe endotoxin binding and neutralizing activities, and further suggest that antibacterial/membrane perturbant and LPS neutralizing activities are dissociable, which may be of value in designing LPS-sequestering agents of low toxicity

    The effect of temperature on growth and competition between Sphagnum species

    Get PDF
    Peat bogs play a large role in the global sequestration of C, and are often dominated by different Sphagnum species. Therefore, it is crucial to understand how Sphagnum vegetation in peat bogs will respond to global warming. We performed a greenhouse experiment to study the effect of four temperature treatments (11.2, 14.7, 18.0 and 21.4°C) on the growth of four Sphagnum species: S. fuscum and S. balticum from a site in northern Sweden and S. magellanicum and S. cuspidatum from a site in southern Sweden. In addition, three combinations of these species were made to study the effect of temperature on competition. We found that all species increased their height increment and biomass production with an increase in temperature, while bulk densities were lower at higher temperatures. The hollow species S. cuspidatum was the least responsive species, whereas the hummock species S. fuscum increased biomass production 13-fold from the lowest to the highest temperature treatment in monocultures. Nutrient concentrations were higher at higher temperatures, especially N concentrations of S. fuscum and S. balticum increased compared to field values. Competition between S. cuspidatum and S. magellanicum was not influenced by temperature. The mixtures of S. balticum with S. fuscum and S. balticum with S. magellanicum showed that S. balticum was the stronger competitor, but it lost competitive advantage in the highest temperature treatment. These findings suggest that species abundances will shift in response to global warming, particularly at northern sites where hollow species will lose competitive strength relative to hummock species and southern species

    Greenhouse gas emissions of realistic dietary choices in Denmark: the carbon footprint and nutritional value of dairy products

    Get PDF
    Background: Dairy products are important in a healthy diet due to their high nutritional value; they are, however, associated with relatively large greenhouse gas emissions (GHGE) per kg product. When discussing the need to reduce the GHGE caused by the food system, it is crucial to consider the nutritional value of alternative food choices. Objective: The objective of this study was to elucidate the role of dairy products in overall nutrition and to clarify the effects of dietary choices on GHGE, and to combine nutritional value and GHGE data. Methods: We created eight dietary scenarios with different quantity of dairy products using data from the Danish National Dietary Survey (1995–2006). Nutrient composition and GHGE data for 71 highly consumed foods were used to estimate GHGE and nutritional status for each dietary scenario. An index was used to estimate nutrient density in relation to nutritional recommendation and climate impact for solid food items; high index values were those with the highest nutrient density scores in relation to the GHGE. Results: The high-dairy scenario resulted in 27% higher protein, 13% higher vitamin D; 55% higher calcium; 48% higher riboflavin; and 18% higher selenium than the non-dairy scenario. There was a significant correlation between changes in calcium and changes in vitamin D, selenium, and riboflavin content (P=0.0001) throughout all of the diets. The estimated GHGE for the dietary scenario with average-dairy consumption was 4,631 g CO2e/day. Conclusions: When optimizing a diet with regard to sustainability, it is crucial to account for the nutritional value and not solely focus on impact per kg product. Excluding dairy products from the diet does not necessarily mitigate climate change but in contrast may have nutritional consequences

    Within- and across-breed genomic prediction using whole-genome sequence and single nucleotide polymorphism panels

    Get PDF
    International audienceBackground Currently, genomic prediction in cattle is largely based on panels of about 54k single nucleotide polymorphisms (SNPs). However with the decreasing costs of and current advances in next-generation sequencing technologies, whole-genome sequence (WGS) data on large numbers of individuals is within reach. Availability of such data provides new opportunities for genomic selection, which need to be explored.MethodsThis simulation study investigated how much predictive ability is gained by using WGS data under scenarios with QTL (quantitative trait loci) densities ranging from 45 to 132 QTL/Morgan and heritabilities ranging from 0.07 to 0.30, compared to different SNP densities, with emphasis on divergent dairy cattle breeds with small populations. The relative performances of best linear unbiased prediction (SNP-BLUP) and of a variable selection method with a mixture of two normal distributions (MixP) were also evaluated. Genomic predictions were based on within-population, across-population, and multi-breed reference populations.ResultsThe use of WGS data for within-population predictions resulted in small to large increases in accuracy for low to moderately heritable traits. Depending on heritability of the trait, and on SNP and QTL densities, accuracy increased by up to 31 %. The advantage of WGS data was more pronounced (7 to 92 % increase in accuracy depending on trait heritability, SNP and QTL densities, and time of divergence between populations) with a combined reference population and when using MixP. While MixP outperformed SNP-BLUP at 45 QTL/Morgan, SNP-BLUP was as good as MixP when QTL density increased to 132 QTL/Morgan.ConclusionsOur results show that, genomic predictions in numerically small cattle populations would benefit from a combination of WGS data, a multi-breed reference population, and a variable selection method

    The pigmented life of a redhead.

    Get PDF
    As a redhead I have had a personal interest in red hair, freckles and sunburns since childhood. An observation of a formaldehyde-induced fluorescence in human epidermal melanocytes initiated my scientific interest in these cells. Prota and Nicolaus demonstrated that oxidation products of cysteinyldopas are the main components of pheomelanin. Our identification of 5-S-cysteinyldopa as the source of formaldehyde-induced fluorescence of normal and pathological melanocytes started a series of investigations into this amino acid, enzymatic and non-enzymatic oxidation of catecholic compounds and the metabolism of thiols. All melanocytes with functioning tyrosinase produce cysteinyldopas and the levels of 5-S-cysteinyldopa in serum and urine are related to the size and pigment forming activity of the melanocyte population. The determination of 5-S-cysteinyldopa in serum or urine is a sensitive diagnostic method in the detection of melanoma metastasis. Some non-specific formation of cysteinyldopa is present in the body, as demonstrated by 5-S-cysteinyldopa in individuals with tyrosinase-negative albinism

    Twenty-Two Years of Warming, Fertilisation and Shading of Subarctic Heath Shrubs Promote Secondary Growth and Plasticity but Not Primary Growth

    Get PDF
    Most manipulation experiments simulating global change in tundra were short-term or did not measure plant growth directly. Here, we assessed the growth of three shrubs (Cassiope tetragona, Empetrum hermaphroditum and Betula nana) at a subarctic heath in Abisko (Northern Sweden) after 22 years of warming (passive greenhouses), fertilisation (nutrients addition) and shading (hessian fabric), and compare this to observations from the first decade of treatment. We assessed the growth rate of current-year leaves and apical stem (primary growth) and cambial growth (secondary growth), and integrated growth rates with morphological measurements and species coverage. Primary- and total growth of Cassiope and Empetrum were unaffected by manipulations, whereas growth was substantially reduced under fertilisation and shading (but not warming) for Betula. Overall, shrub height and length tended to increase under fertilisation and warming, whereas branching increased mostly in shaded Cassiope. Morphological changes were coupled to increased secondary growth under fertilisation. The species coverage showed a remarkable increase in graminoids in fertilised plots. Shrub response to fertilisation was positive in the short-term but changed over time, likely because of an increased competition with graminoids. More erected postures and large, canopies (requiring enhanced secondary growth for stem reinforcement) likely compensated for the increased light competition in Empetrum and Cassiope but did not avoid growth reduction in the shade intolerant Betula. The impact of warming and shading on shrub growth was more conservative. The lack of growth enhancement under warming suggests the absence of long-term acclimation for processes limiting biomass production. The lack of negative effects of shading on Cassiope was linked to morphological changes increasing the photosynthetic surface. Overall, tundra shrubs showed developmental plasticity over the longer term. However, such plasticity was associated clearly with growth rate trends only in fertilised plots
    corecore