132 research outputs found

    Scaling percentages and distributional patterns of benthic foraminifera with flux rates of organic carbon

    Get PDF
    Seafloor organic matter flux from marine primary productivity is quantified, and the range of annual flux rates is calculated and compared to the counts of benthic foraminifera at 382 surface sediment stations from the equatorial Guinea Basin to the Arctic Ocean. Benthic foraminifera show high variability in flux range dependent distributional patterns, with maximum deviations at lowest percentages. The occurrence of a single species covers flux ranges within one to three orders of magnitude. Only a small number of species shows a correlation of this broad range of organic fluxes versus percentages in a count. For C. wuellerstorfi a functional relationship for the recalculation of flux rates from percentages in a count can be given within a standard deviation below 2 g organic carbon [m 2 yr 1]. However, such functions have to be restricted to a specific size range counted. The patterns of dominance more closely scale the environmental optimum of the species in general. For interspecific combinations, these patterns identify the ranges of overlap, where it is impossible to distinguish between higher or lower fluxes on the basis of faunal composition. This is quantified for the co-occurrence of C. wuellerstorfi and U. peregrina near 20% for one species. On an ocean wide scale, a number of taxa can be used to define threshold values for the nutritive needs of the assemblages, most pronounced within annual flux ranges at 2-3 g org. C [m-2]. Different trophic needs of species can be attributed to their infaunal, epibenthic, or opportunistic behavior respectively, and examples for the flux dependent takeover in dominance are given. These quantifications may offer approximations for flux rate dependent faunal patterns in surface sediments and for the detection of flux rate dependent faunal fluctuations in the Quaternary record

    High‐Resolution Mg/Ca Measurements of Foraminifer Shells Using Femtosecond LA‐ICP‐MS for Paleoclimate Proxy Development

    Get PDF
    Determination of Mg/Ca in foraminifer shells as a proxy of seawater temperature is of particular interest in paleoclimate reconstruction. Here we show that femtosecond–200 nm–laser ablation–inductively coupled plasma–mass spectrometry is a suitable technique to precisely and accurately determine Mg/Ca in the micrometer-sized calcareous chambers of foraminifers. At low fluence (0.3–0.6 J/cm 2 ) the double-charged 44 Ca ++ and the single-charged 25 Mg + ions are measured nearly simultaneously. Integrated single-shot measurements using a pulse repetition rate of 1 Hz enable precise analyses at a depth resolution of about 50–100 nm/pulse corresponding to an ablated material of 0.3–0.6 ng calcite/pulse for a spot size of 55 ÎŒm. High-resolution analyses can be performed until a depth of 10–20 ÎŒm and thus particularly suitable for thin-shelled foraminifers. Reproducibility (relative standard deviation) is about 5% as approved by homogeneous reference materials. Calibration is performed with the microanalytical synthetic reference material MACS-3. Magnesium and Ca data of different carbonate and silicate reference materials agree within uncertainties with reference values. The procedure has been successfully applied for detailed analyses of single chambers and shell-depth profiles of live individuals and empty planktic and benthic foraminifer tests from different ocean basins

    High Precision Femtosecond Laser Ablation ICP‐MS Measurement of Benthic Foraminiferal Mn‐Incorporation for Paleoenvironmental Reconstruction: A Case Study From the Plio‐Pleistocene Caribbean Sea

    Get PDF
    Closure of the Central American Seaway (CAS) and hydrology of the Caribbean Sea triggered Northern Hemisphere Glaciation and played an important role in the Pliocene to modern-day climate re-establishing the deep and surface ocean currents. New data on Mn/Ca obtained with femtosecond laser ablation inductively coupled plasma mass spectrometry on well-preserved tests of the epibenthic foraminifer Cibicidoides wuellerstorfi and infaunal C. mundulus contribute to the interpretation of paleoenvironmental conditions of the Caribbean Sea between 5.2 and 2.2 Ma (million years) across the closure of the CAS. Hydrothermal activity at the Lesser Antilles may be a primary source of Mn in the well-oxygenated Plio-Pleistocene Caribbean Sea. Incorporation of Mn in the benthic foraminifer shell carbonate is assumed to be affected by surface ocean nutrient cycling, and may hence be an indicator of paleoproductivity. Key Points - Femtosecond-laser ablation inductively coupled plasma mass spectrometry provides a new approach on distinguishing Mn of the ontogenetic shell calcite from Mn of the authigenic coatings - Ontogenetic Mn within the foraminifer shell calcite may result from the regional nutrient cycle - Mn in the deep eastern Caribbean Sea may mainly derive from hydrothermal sources along the Antilles Island Ar

    Characterisation of breast fine-needle aspiration biopsies by centrosome aberrations and genomic instability

    Get PDF
    Recent studies have suggested that aneuploidy in malignant tumours could be a consequence of centrosome aberrations. Using immunofluorescence analysis with an antibody against Îł-tubulin and DNA image cytometry, we measured centrosome aberrations and DNA ploidy patterns in fine-needle aspiration biopsies (FNABs) of 58 breast lesions. Benign lesions did not show any centrosome aberrations. DNA diploid carcinomas showed a mean percentage of cells with centrosomal defects of 2.1%. The aneuploid invasive carcinomas could be divided into two subgroups by their significantly (P=0.0003) different percentage of cells with centrosome aberrations (2.0 and 10.3%, respectively) and their significantly (P=0.0003) different percentage of cells with nonmodal DNA content values determined by the Stemline Scatter Index (SSI), a measure of genomic instability. The percentage of cells with centrosome aberrations demonstrated a positive, linear correlation with the corresponding SSI (r=0.82, P<0.0001) and loss of tissue differentiation (r=0.78, P<0.0001). Our results indicate the percentage of cells with centrosome aberrations as being sufficient to divide the investigated tumours into three significantly different groups: benign lesions with no centrosomal aberrations, and two malignant tumour types with mean values of 2.1 and 9.6% of centrosomal defects, respectively. Together, these results demonstrate that centrosome aberrations correlate with genomic instability and loss of tissue differentiation. Furthermore, this study shows the feasibility of centrosomal analysis in FNAB of the breast and suggests centrosomal aberrations as possessing diagnostic and prognostic value

    Observation of viscosity transition in α-pinene secondary organic aerosol

    Get PDF
    Under certain conditions, secondary organic aerosol (SOA) particles can exist in the atmosphere in an amorphous solid or semi-solid state. To determine their relevance to processes such as ice nucleation or chemistry occurring within particles requires knowledge of the temperature and relative humidity (RH) range for SOA to exist in these states. In the CLOUD experiment at CERN, we deployed a new in-situ optical method to detect the viscosity of α-pinene SOA particles and measured their transition from the amorphous viscous to liquid state. The method is based on the depolarising properties of laboratory-produced non-spherical SOA particles and their transformation to non-depolarising spherical liquid particles during deliquescence. We found that particles formed and grown in the chamber developed an asymmetric shape through coagulation. A transition to spherical shape was observed as the RH was increased to between 35 % at −10 °C and 80 % at −38 °C, confirming previous calculations of the viscosity transition conditions. Consequently, α-pinene SOA particles exist in a viscous state over a wide range of ambient conditions, including the cirrus region of the free troposphere. This has implications for the physical, chemical and ice-nucleation properties of SOA and SOA-coated particles in the atmosphere

    Abstracts of presentations on plant protection issues at the fifth international Mango Symposium Abstracts of presentations on plant protection issues at the Xth international congress of Virology: September 1-6, 1996 Dan Panorama Hotel, Tel Aviv, Israel August 11-16, 1996 Binyanei haoma, Jerusalem, Israel

    Get PDF
    • 

    corecore