32 research outputs found

    Applying the WHO ICD-PM classification system to stillbirths in a major referral Centre in Northeast Nigeria: a retrospective analysis from 2010-2018.

    Get PDF
    BACKGROUND: Lack of a unified and comparable classification system to unravel the underlying causes of stillbirth hampers the development and implementation of targeted interventions to reduce the unacceptably high stillbirth rates (SBR) in sub-Saharan Africa. Our aim was to track the SBR and the predominant maternal and fetal causes of stillbirths using the WHO ICD-PM Classification system. METHODS: This was a retrospective observational study in a major referral centre in northeast Nigeria between 2010 and 2018. Specialist Obstetricians and Gynaecologists assigned causes of stillbirths after an extensive audit of available stillbirths' records. Cause of death was assigned via consensus using the ICD-PM classification system. RESULTS: There were 21,462 births between 1 January 2010 and 31 December 2018 in our study setting; of these, 1177 culminated in stillbirths with a total hospital SBR of 55 per 1000 births (95% CI: 52, 58). There were two peaks of stillbirths in 2012 [62 per 1000 births (95% CI: 53, 71)], and 2015 [65 per 1000 births (95% CI, 55, 76)]. Antepartum and intrapartum stillbirths were almost equally prevalent (48% vs 52%). Maternal medical and surgical conditions (M4) were the commonest (69.3%) cause of antepartum stillbirths while complications of placenta, cord and membranes (M3) accounted for the majority (45.8%) of intrapartum stillbirths and the trends were similar between 2010 and 2018. Antepartum and intrapartum fetal causes of stillbirths were mainly due to prematurity which is a disorder of fetal growth (A5 and I6). CONCLUSIONS: Most causes of stillbirths in our setting are due to preventable causes and the trends have remained unabated between 2010 and 2018. Progress toward global SBR targets are off-track, requiring more interventions to halt and reduce the high SBR

    Investigation of sequential outbreaks of Burkholderia cepacia and multidrug-resistant extended spectrum β-lactamase producing Klebsiella species in a West African tertiary hospital neonatal unit: a retrospective genomic analysis

    Get PDF
    Background Sick newborns admitted to neonatal units in low-resource settings are at an increased risk of developing hospital-acquired infections due to poor clinical care practices. Clusters of infection, due to the same species, with a consistent antibiotic resistance profile, and in the same ward over a short period of time might be indicative of an outbreak. We used whole-genome sequencing (WGS) to define the transmission pathways and characterise two distinct outbreaks of neonatal bacteraemia in a west African neonatal unit. Methods We studied two outbreaks of Burkholderia cepacia and multidrug-resistant extended spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae in a neonatal unit that provides non-intensive care on the neonatal ward in the Edward Francis Small Teaching Hospital, Banjul, The Gambia. We used WGS to validate and expand findings from the outbreak investigation. We retrospectively sequenced all clinical isolates associated with each outbreak, including isolates obtained from swabs of ward surfaces, environmental fluid cultures, intravenous fluids, and antibiotics administered to newborns. We also sequenced historical B cepacia isolates associated with neonatal sepsis in the same ward. Results Between March 1 and Dec 31, 2016, 321 blood cultures were done, of which 178 (55%) were positive with a clinically significant isolate. 49 episodes of neonatal B cepacia bacteraemia and 45 episodes of bacteraemia due to ESBL-producing K pneumoniae were reported. WGS revealed the suspected K pneumoniae outbreak to be contemporaneous outbreaks of K pneumoniae (ST39) and previously unreported Klebsiella quasipneumoniae subspecies similipneumoniae (ST1535). Genomic analysis showed near-identical strain clusters for each of the three outbreak pathogens, consistent with transmission within the neonatal ward from extrinsically contaminated in-use intravenous fluids and antibiotics. Time-dated phylogeny, including retrospective analysis of archived bacterial strains, suggest B cepacia has been endemic in the neonatal ward over several years, with the Klebsiella species a more recent introduction. Interpretation Our study highlights the emerging threat of previously unreported strains of multidrug-resistant Klebsiella species in this neonatal unit. Genome-based surveillance studies can improve identification of circulating pathogen strains, characterisation of antimicrobial resistance, and help understand probable infection acquisition routes during outbreaks in newborn units in low-resource settings. Our data provide evidence for the need to regularly monitor endemic transmission of bacteria within the hospital setting, identify the introduction of resistant strains from the community, and improve clinical practices to reduce or prevent the spread of infection and resistance

    Oral Activated Charcoal Prevents Experimental Cerebral Malaria in Mice and in a Randomized Controlled Clinical Trial in Man Did Not Interfere with the Pharmacokinetics of Parenteral Artesunate

    Get PDF
    Background: Safe, cheap and effective adjunct therapies preventing the development of, or reducing the mortality from, severe malaria could have considerable and rapid public health impact. Oral activated charcoal (oAC) is a safe and well tolerated treatment for acute poisoning, more recently shown to have significant immunomodulatory effects in man. In preparation for possible efficacy trials in human malaria, we sought to determine whether oAC would i) reduce mortality due to experimental cerebral malaria (ECM) in mice, ii) modulate immune and inflammatory responses associated with ECM, and iii) affect the pharmacokinetics of parenteral artesunate in human volunteers.Methods/Principal Findings: We found that oAC provided significant protection against P. berghei ANKA-induced ECM, increasing overall survival time compared to untreated mice (p<0.0001; hazard ratio 16.4; 95% CI 6.73 to 40.1). Protection from ECM by oAC was associated with reduced numbers of splenic TNF+ CD4(+) T cells and multifunctional IFN gamma(+) TNF+ CD4(+) and CD8(+) T cells. Furthermore, we identified a whole blood gene expression signature (68 genes) associated with protection from ECM. To evaluate whether oAC might affect current best available anti-malarial treatment, we conducted a randomized controlled open label trial in 52 human volunteers (ISRCTN NR. 64793756), administering artesunate ( AS) in the presence or absence of oAC. We demonstrated that co-administration of oAC was safe and well-tolerated. In the 26 subjects further analyzed, we found no interference with the pharmacokinetics of parenteral AS or its pharmacologically active metabolite dihydroartemisinin.Conclusions/Significance: oAC protects against ECM in mice, and does not interfere with the pharmacokinetics of parenteral artesunate. If future studies succeed in establishing the efficacy of oAC in human malaria, then the characteristics of being inexpensive, well-tolerated at high doses and requiring no sophisticated storage would make oAC a relevant candidate for adjunct therapy to reduce mortality from severe malaria, or for immediate treatment of suspected severe malaria in a rural setting

    Community-acquired invasive bacterial disease in urban Gambia, 2005–2015: A hospital-based surveillance

    Get PDF
    Background. Invasive bacterial diseases cause significant disease and death in sub-Saharan Africa. Several are vaccine preventable, although the impact of new vaccines and vaccine policies on disease patterns in these communities is poorly understood owing to limited surveillance data. Methods. We conducted a hospital-based surveillance of invasive bacterial diseases in The Gambia where blood and cerebrospinal fluid (CSF) samples of hospitalized participants were processed. Three surveillance periods were defined in relation to the introduction of pneumococcal conjugate vaccines (PCVs), before (2005- 2009), during (2010–2011) and after (2012–2015) PCV introduction. We determined the prevalences of commonly isolated bacteria and compared them between the different surveillance periods. Results. A total of 14 715 blood and 1103 CSF samples were collected over 11 years; overall, 1045 clinically significant organisms were isolated from 957 patients (972 organisms [6.6%] from blood and 73 [6.6%] from CSF). The most common blood culture isolates were Streptococcus pneumoniae (24.9%), Staphylococcus aureus (22.0%), Escherichia coli (10.9%), and nontyphoidal Salmonella (10.0%). Between the pre-PCV and post-PCV eras, the prevalence of S. pneumoniae bacteremia dropped across all age groups (from 32.4% to 16.5%; odds ratio, 0.41; 95% confidence interval, .29–.58) while S. aureus increased in prevalence, becoming the most prevalent bacteria (from 16.9% to 27.2%; 1.75; 1.26–2.44). Overall, S. pneumoniae (53.4%), Neisseria meningitidis (13.7%), and Haemophilus influenzae (12.3%) were the predominant isolates from CSF. Antimicrobial resistance to common antibiotics was low. Conclusions. Our findings demonstrate that surveillance data on the predominant pathogens associated with invasive disease is necessary to inform vaccine priorities and appropriate management of patients

    Incidence of Plasmodium falciparum malaria infection in 6-month to 45-year-olds on selected areas of Bioko Island, Equatorial Guinea

    Get PDF
    BACKGROUND: Extensive malaria control measures have been implemented on Bioko Island, Equatorial Guinea over the past 16 years, reducing parasite prevalence and malaria-related morbidity and mortality, but without achieving elimination. Malaria vaccines offer hope for reducing the burden to zero. Three phase 1/2 studies have been conducted successfully on Bioko Island to evaluate the safety and efficacy of whole Plasmodium falciparum (Pf) sporozoite (SPZ) malaria vaccines. A large, pivotal trial of the safety and efficacy of the radiation-attenuated Sanaria((R)) PfSPZ Vaccine against P. falciparum is planned for 2022. This study assessed the incidence of malaria at the phase 3 study site and characterized the influence of socio-demographic factors on the burden of malaria to guide trial design. METHODS: A cohort of 240 randomly selected individuals aged 6 months to 45 years from selected areas of North Bioko Province, Bioko Island, was followed for 24 weeks after clearance of parasitaemia. Assessment of clinical presentation consistent with malaria and thick blood smears were performed every 2 weeks. Incidence of first and multiple malaria infections per person-time of follow-up was estimated, compared between age groups, and examined for associated socio-demographic risk factors. RESULTS: There were 58 malaria infection episodes observed during the follow up period, including 47 first and 11 repeat infections. The incidence of malaria was 0.25 [95% CI (0.19, 0.32)] and of first malaria was 0.23 [95% CI (0.17, 0.30)] per person per 24 weeks (0.22 in 6-59-month-olds, 0.26 in 5-17-year-olds, 0.20 in 18-45-year-olds). Incidence of first malaria with symptoms was 0.13 [95% CI (0.09, 0.19)] per person per 24 weeks (0.16 in 6-59-month-olds, 0.10 in 5-17-year-olds, 0.11 in 18-45-year-olds). Multivariate assessment showed that study area, gender, malaria positivity at screening, and household socioeconomic status independently predicted the observed incidence of malaria. CONCLUSION: Despite intensive malaria control efforts on Bioko Island, local transmission remains and is spread evenly throughout age groups. These incidence rates indicate moderate malaria transmission which may be sufficient to support future larger trials of PfSPZ Vaccine. The long-term goal is to conduct mass vaccination programmes to halt transmission and eliminate P. falciparum malaria

    WHO global research priorities for antimicrobial resistance in human health

    Get PDF
    The WHO research agenda for antimicrobial resistance (AMR) in human health has identified 40 research priorities to be addressed by the year 2030. These priorities focus on bacterial and fungal pathogens of crucial importance in addressing AMR, including drug-resistant pathogens causing tuberculosis. These research priorities encompass the entire people-centred journey, covering prevention, diagnosis, and treatment of antimicrobial-resistant infections, in addition to addressing the overarching knowledge gaps in AMR epidemiology, burden and drivers, policies and regulations, and awareness and education. The research priorities were identified through a multistage process, starting with a comprehensive scoping review of knowledge gaps, with expert inputs gathered through a survey and open call. The priority setting involved a rigorous modified Child Health and Nutrition Research Initiative approach, ensuring global representation and applicability of the findings. The ultimate goal of this research agenda is to encourage research and investment in the generation of evidence to better understand AMR dynamics and facilitate policy translation for reducing the burden and consequences of AMR

    WHO global research priorities for antimicrobial resistance in human health

    Get PDF
    The WHO research agenda for antimicrobial resistance (AMR) in human health has identified 40 research priorities to be addressed by the year 2030. These priorities focus on bacterial and fungal pathogens of crucial importance in addressing AMR, including drug-resistant pathogens causing tuberculosis. These research priorities encompass the entire people-centred journey, covering prevention, diagnosis, and treatment of antimicrobial-resistant infections, in addition to addressing the overarching knowledge gaps in AMR epidemiology, burden and drivers, policies and regulations, and awareness and education. The research priorities were identified through a multistage process, starting with a comprehensive scoping review of knowledge gaps, with expert inputs gathered through a survey and open call. The priority setting involved a rigorous modified Child Health and Nutrition Research Initiative approach, ensuring global representation and applicability of the findings. The ultimate goal of this research agenda is to encourage research and investment in the generation of evidence to better understand AMR dynamics and facilitate policy translation for reducing the burden and consequences of AMR

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore