40 research outputs found

    The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database

    Get PDF
    This is the final version of the article. Available from European Geosciences Union via the DOI in this record.Data availability. The data referenced in this manuscript are provided as Supplement Data Files 1 to 8. In the final version, these files will form DeepMIP database version 0.1 and will be accessible online via a citable DOI reference.The early Eocene (56 to 48 million years ago) is inferred to have been the most recent time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Global mean temperatures were also substantially warmer than those of the present day. As such, the study of early Eocene climate provides insight into how a super-warm Earth system behaves and offers an opportunity to evaluate climate models under conditions of high greenhouse gas forcing. The Deep Time Model Intercomparison Project (DeepMIP) is a systematic model–model and model–data intercomparison of three early Paleogene time slices: latest Paleocene, Paleocene–Eocene thermal maximum (PETM) and early Eocene climatic optimum (EECO). A previous article outlined the model experimental design for climate model simulations. In this article, we outline the methodologies to be used for the compilation and analysis of climate proxy data, primarily proxies for temperature and CO2. This paper establishes the protocols for a concerted and coordinated effort to compile the climate proxy records across a wide geographic range. The resulting climate “atlas” will be used to constrain and evaluate climate models for the three selected time intervals and provide insights into the mechanisms that control these warm climate states. We provide version 0.1 of this database, in anticipation that this will be expanded in subsequent publications.Natural Environment Research Council (NERC)GNS Science Global Change through Time ProgrammeNational Science Foundation (NSF)KU Leuve

    Glacial to Holocene terrigenous organic matter input to sediments from Orca Basin, Gulf of Mexico — A combined optical and biomarker approach

    Get PDF
    In this study we assessed changes in the contribution of terrigenous organic matter (OM) to the Gulf of Mexico over the course of the last deglaciation (the last 25 kyr). To this end, we combined optical kerogen analyses with bulk sedimentary, biomarker, and compound-specific carbon isotope analyses. Samples were obtained from core MD02-2550 from Orca Basin (2249 m water depth at 26°56.77N, 91°20.74W) with temporal resolution ranging from multi-decadal to millennial-scale, depending on the proxy. All proxies confirmed larger terrigenous input during glacial times compared to the Holocene. In addition, the kerogen analyses suggest that much of the glacial OM is reworked (at least 50% of spores and pollen grains and 40% of dinoflagellate cysts). The Holocene sediments, in contrast, contain mainly marine OM, which is exceptionally well preserved. During the deglaciation, terrigenous input was generally high due to large meltwater fluxes, whereby discrepancies between different proxies call for additional influences, such as the change in distance to the river mouth, local productivity changes, and hydrodynamic particle sorting. It is possible that kerogen particles and the terrigenous biomarkers studied here represent distinct pools of land-derived OM with inputs varying independently

    The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database

    Get PDF
    The early Eocene (56 to 48 million years ago) is inferred to have been the most recent time that Earth's atmospheric CO₂ concentrations exceeded 1000 ppm. Global mean temperatures were also substantially warmer than those of the present day. As such, the study of early Eocene climate provides insight into how a super-warm Earth system behaves and offers an opportunity to evaluate climate models under conditions of high greenhouse gas forcing. The Deep Time Model Intercomparison Project (DeepMIP) is a systematic model–model and model–data intercomparison of three early Paleogene time slices: latest Paleocene, Paleocene–Eocene thermal maximum (PETM) and early Eocene climatic optimum (EECO). A previous article outlined the model experimental design for climate model simulations. In this article, we outline the methodologies to be used for the compilation and analysis of climate proxy data, primarily proxies for temperature and CO₂. This paper establishes the protocols for a concerted and coordinated effort to compile the climate proxy records across a wide geographic range. The resulting climate “atlas” will be used to constrain and evaluate climate models for the three selected time intervals and provide insights into the mechanisms that control these warm climate states. We provide version 0.1 of this database, in anticipation that this will be expanded in subsequent publications

    The financialization of mass wealth, banking crises and politics over the long run

    Get PDF
    The co-evolution of democratic politics and mass, financialized wealth has destabilized highly integrated financial systems and the socio-political underpinnings of neoliberal policy norms at domestic and global levels. Over the long run, it has increased the political pressure on governments to undertake bailouts during major banking crises and, by raising voters’ attentiveness to wealth losses and distributional inequities, has sharply raised the bar for government performance. The result has been more costly bailouts, greater political instability and the sustained politicization of wealth cleavages in crisis aftermaths. We underline the crucial importance and modernity of this phenomenon by showing how the high concentration of wealth in pre-1914 Britain and America among elites was associated with limited crisis interventions and surprisingly tranquil political aftermaths. By contrast, the 2007–2009 crises in both countries epitomise the political dilemmas facing elected governments in a new world of mass financialized wealth and the impact on political polarization and democratic politics. We show that these dilemmas were embryonic in the interwar period and highlight how the evolutionary forces shaping policy and political outcomes reveal the importance of time, context and the effects of long cycles in the world economy and global politics

    Abdominal sonography in diseases of colon

    No full text
    Les applications principales de l'échographie colique sont le diagnostic et le suivi de la maladie de Crohn, de la colite ulcérative, de la diverticulite et de l'iléus, ainsi que des formes transmurales de l'entérocolite infectieuse. Sa valeur dans la recherche de tumeurs coliques est arbitraire, et elle est négligeable dans d'autres maladies. L'analyse de la transformation de la paroi intestinale suit une typologie orientée selon les modifications pathologiques des couches anatomiques. Sept types de ces modifications ont été décrites et mis en relation : 1) type accentué, 2) type gyriforme, 3) type hypo-échogène avec contours flous ou 4) avec contours nets, 5) type à dominante sub-mucosale, 6) type à dominante muscularis et 7) destruction de couche. L'échographie montrera les manifestations extra-intestinales de la maladie de Crohn et de la diverticulite (rayures mésentériques hypoéchogènes et infiltration séreuse/omentale hyper-échogène, fistules et abcès). Cette technique peut estimer le degré de sténose et son impact sur le transit depuis un ralentissement insignifiant jusqu'à un sub-iléus. En diagnostic différentiel, elle montrera la transformation continue faiblement échogène de la paroi dans les accès sévères de colite ulcérative, son extension ascendante, ses phases de rémission et elle mettra également en évidence l'épaississement gyriforme ou accentué de la paroi et l'augmentation de taille des ganglions lymphatiques de proximité dans l'entérocolite infectieuse

    Genetic analysis of inflammatory bowel disease in a large European cohort supports linkage to chromosomes 12 and 16

    No full text
    Inflammatory bowel disease (IBD) is a complex disorder of unknown etiology. Epidemiological investigations suggest a genetic basis for IBD. Recent genetic studies have identified several IBD linkages. The significance of these linkages will be determined by studies in large patient collections. The aim of this study was to replicate IBD linkages on chromosomes 12 and 16 in a large European cohort. Three hundred fifty-nine affected sibling pairs from 274 kindreds were genotyped using microsatellite markers spanning chromosomes 12 and 16. Affection status of the sibling pairs was defined as Crohn's disease (CD) or ulcerative colitis (UC). Nonparametric statistical analyses showed linkage for both chromosomes. Two-point results for chromosome 12 peaked at D12S303 (logarithm of odds [LOD], 2.15; P = 0.003) for CD and at D12S75 (LOD, 0.92; P = 0.03) for UC. Multipoint analyses produced a peak LOD of 1.8 for CD. Chromosome 16 showed linkage for CD at marker D16S415 (LOD, 1.52; P = 0.007). Multipoint support peaked above markers D16S409 and D16S411 (LOD, 1.7). These data are consistent with linkage of IBD to chromosomes 12 and 16. The replication of genetic risk loci in a large independent family collection indicates important and common susceptibility genes in these regions and will facilitate identification of genes involved in IB
    corecore