258 research outputs found

    The corner failure in a masonry building damaged by the 2016-2017 Central Italy earthquake sequence

    Get PDF
    Although still poorly investigated, the failure of corners is a frequent event in masonry buildings and clearly recognizable in the aftermath of a seismic event. It is characterized by the formation of a masonry wedge, mainly due to the thrust of roof elements in addition to inertial forces, and it generally involves rocking-sliding motion along the cracks on the interlocked orthogonal walls. In this paper, the case study of the corner failure in a masonry building located in Visso (Italy) is analyzed. The building was seriously damaged by the seismic events of August 24th, 2016 and October 26th and 30th, 2016. In particular, one of the free corners at the first storey completely collapsed. The seismic capacity with respect to the onset of this failure mode is analyzed by means of a refined macro-block model and by adopting the linear kinematic approach of limit analysis, accounting for frictional resistances and the thrust of roof elements. The key aspect of the proposed approach is the introduction of a criterion to evaluate the contribution of the actual frictional resistances depending on the inclination angles of the crack lines. Moreover, the loads transmitted from the roof to the walls are defined by assuming simplified static conditions according to the typology of the hipped roof. Lastly, the achieved results are compared to the seismic demand obtained by adopting the Italian Technical Standards for Constructions, both the earlier version (2008) and the current one (2018), together with that obtained using in situ recorded floor accelerations

    Three-year observations of halocarbons at the Nepal Climate Observatory at Pyramid (NCO-P, 5079 m a.s.l.) on the Himalayan range

    Get PDF
    A monitoring programme for halogenated climate-altering gases has been established in the frame of the SHARE EV-K<sup>2</sup>-CNR project at the Nepal Climate Laboratory – Pyramid in the Himalayan range at the altitude of 5079 m a.s.l. The site is very well located to provide important insights on changes in atmospheric composition in a region that is of great significance for emissions of both anthropogenic and biogenic halogenated compounds. Measurements are performed since March 2006, with grab samples collected on a weekly basis. The first three years of data have been analysed. After the identification of the atmospheric background values for fourteen halocarbons, the frequency of occurrence of pollution events have been compared with the same kind of analysis for data collected at other global background stations. The analysis showed the fully halogenated species, whose production and consumption are regulated under the Montreal Protocol, show a significant occurrence of "above the baseline" values, as a consequence of their current use in the developing countries surrounding the region, meanwhile the hydrogenated gases, more recently introduced into the market, show less frequent spikes. <br><br> Atmospheric concentration trends have been calculated as well, and they showed a fast increase, ranging from 5.7 to 12.6%, of all the hydrogenated species, and a clear decrease of methyl chloroform (−17.7%). The comparison with time series from other stations has also allowed to derive Meridional gradients, which are absent for long living well mixed species, while for the more reactive species, the gradient increases inversely with respect to their atmospheric lifetime. The effect of long range transport and of local events on the atmospheric composition at the station has been analysed as well, allowing the identification of relevant source regions the Northern half of the Indian sub-continent. Also, at finer spatial scales, a smaller, local contribution of forest fires from the Khumbu valley has been detected

    Preoperative Localization in Colonic Surgery (PLoCoS Study): a multicentric experience on behalf of the Italian Society of Colorectal Surgery (SICCR)

    Get PDF
    The aim of this prospective multicentric study was to compare the accurate colonic lesion localization ratio between CT and colonoscopy in comparison with surgery. All consecutive patients from 1st January to 31st December 2019 with a histologically confirmed diagnosis of dysplastic adenoma or adenocarcinoma with planned elective, curative colonic resection who underwent both colonoscopy and CT scans were included. Each patient underwent conventional colonoscopy and CT to stage the tumour, and the localization results of each procedure were registered. CT and colonoscopic localization were compared with surgical localization, adopted as the reference. Our analysis included 745 patients from 23 centres. After comparing the accuracy of colonoscopy and CT (for visible lesions) in localizing colonic lesions, no significant differences were found between the two preoperative tools (510/661 vs 499/661 correctly localized lesions, p = 0.518). Furthermore, after analysing only the patients who underwent complete colonoscopy and had a visible lesion on CT, no significant difference was observed between conventional colonoscopy and CT (331/427 vs 340/427, p = 0.505). Considering the intraoperative localization results as a reference, a comparison between colonoscopy and CT showed that colonoscopy significantly failed to correctly locate the lesions localized in the descending colon (17/32 vs 26/32, p = 0.031). We did not identify an advantage in using CT to localize colonic tumours. In this setting, colonoscopy should be considered the reference to properly localize lesions; however, to better identify lesions in the descending colon, CT could be considered a valuable tool to improve the accuracy of lesion localizatio

    Towards the Formalization of Fractional Calculus in Higher-Order Logic

    Full text link
    Fractional calculus is a generalization of classical theories of integration and differentiation to arbitrary order (i.e., real or complex numbers). In the last two decades, this new mathematical modeling approach has been widely used to analyze a wide class of physical systems in various fields of science and engineering. In this paper, we describe an ongoing project which aims at formalizing the basic theories of fractional calculus in the HOL Light theorem prover. Mainly, we present the motivation and application of such formalization efforts, a roadmap to achieve our goals, current status of the project and future milestones.Comment: 9 page

    Vitamin d deficiency induces chronic pain and microglial phenotypic changes in mice

    Get PDF
    The bioactive form of vitamin .D, 1,25‐dihydroxyvitamin D (1,25D3), exerts immunomodulatory actions resulting in neuroprotective effects potentially useful against neurodegenerative and autoimmune diseases. In fact, vitamin D deficiency status has been correlated with painful manifestations associated with different pathological conditions. In this study, we have investigated the effects of vitamin D deficiency on microglia cells, as they represent the main immune cells responsible for early defense at central nervous system (CNS), including chronic pain states. For this purpose, we have employed a model of low vitamin D intake during gestation to evaluate possible changes in primary microglia cells obtained from postnatal day(P)2‐ 3 pups. Afterwards, pain measurement and microglia morphological analysis in the spinal cord level and in brain regions involved in the integration of pain perception were performed in the parents subjected to vitamin D restriction. In cultured microglia, we detected a reactive—activated and proliferative—phenotype associated with intracellular reactive oxygen species (ROS) generation. Oxidative stress was closely correlated with the extent of DNA damage and increased ÎČ‐galactosidase (B‐gal) activity. Interestingly, the incubation with 25D3 or 1,25D3 or palmitoylethanolamide, an endogenous ligand of peroxisome proliferator‐activated‐receptor‐alpha (PPAR‐α), reduced most of these effects. Morphological analysis of ex‐vivo microglia obtained from vitamin‐D‐deficient adult mice revealed an increased number of activated microglia in the spinal cord, while in the brain microglia appeared in a dystrophic phenotype. Remarkably, activated (spinal) or dystrophic (brain) microglia were detected in a prominent manner in females. Our data indicate that vitamin D deficiency produces profound modifications in microglia, suggesting a possible role of these cells in the sensorial dysfunctions associated with hypovitaminosis D

    Significant variations of trace gas composition and aerosol properties at Mt. Cimone during air mass transport from North Africa – contributions from wildfire emissions and mineral dust

    Get PDF
    Abstract. High levels of trace gas (O3 and CO) and aerosol (BC, fine and coarse particle volumes), as well as high scattering coefficient (σp) values, were recorded at the regional GAW-WMO station of Mt. Cimone (CMN, 2165 m a.s.l., Italy) during the period 26–30 August 2007. Analysis of air-mass circulation, aerosol chemical characterization and trace gas and aerosol enhancement ratios (ERs), showed that high O3 and aerosol levels were likely linked to (i) the transport of anthropogenic pollution from northern Italy, and (ii) the advection of air masses rich in mineral dust and biomass burning (BB) products from North Africa. In particular, during the advection of air masses from North Africa, the CO and aerosol levels (CO: 175 ppbv, BC: 1015 ng/m3, fine particle volume: 3.00 ÎŒm3 cm−3, σp: 84.5 Mm−1) were even higher than during the pollution event (CO: 138 ppbv, BC: 733 ng/m3, fine particles volume: 1.58 ÎŒm3 cm−3, σp: 44.9 M

    The greatest air quality experiment ever: Policy suggestions from the COVID-19 lockdown in twelve European cities

    Get PDF
    COVID-19 (Coronavirus disease 2019) hit Europe in January 2020. By March, Europe was the active centre of the pandemic. As a result, widespread "lockdown" measures were enforced across the various European countries, even if to a different extent. Such actions caused a dramatic reduction, especially in road traffic. This event can be considered the most significant experiment ever conducted in Europe to assess the impact of a massive switch-off of atmospheric pollutant sources. In this study, we focus on in situ concentration data of the main atmospheric pollutants measured in twelve European cities, characterized by different climatology, emission sources, and strengths. We propose a methodology for the fair comparison of the impact of lockdown measures considering the non-stationarity of meteorological conditions and emissions, which are progressively declining due to the adoption of stricter air quality measures. The analysis of these unmatched circumstances allowed us to estimate the impact of a nearly zero-emission urban transport scenario on air quality in 12 European cities. The clearest result, common to all the cities, is that a dramatic traffic reduction effectively reduces NO2 concentrations. In contrast, each city’s PM and ozone concentrations can respond differently to the same type of emission reduction measure. From the policy point of view, these findings suggest that measures targeting urban traffic alone may not be the only effective option for improving air quality in cities

    Sortase A Substrate Specificity in GBS Pilus 2a Cell Wall Anchoring

    Get PDF
    Streptococcus agalactiae, also referred to as Group B Streptococcus (GBS), is one of the most common causes of life-threatening bacterial infections in infants. In recent years cell surface pili have been identified in several Gram-positive bacteria, including GBS, as important virulence factors and promising vaccine candidates. In GBS, three structurally distinct types of pili have been discovered (pilus 1, 2a and 2b), whose structural subunits are assembled in high-molecular weight polymers by specific class C sortases. In addition, the highly conserved housekeeping sortase A (SrtA), whose main role is to link surface proteins to bacterial cell wall peptidoglycan by a transpeptidation reaction, is also involved in pili cell wall anchoring in many bacteria. Through in vivo mutagenesis, we demonstrate that the LPXTG sorting signal of the minor ancillary protein (AP2) is essential for pilus 2a anchoring. We successfully produced a highly purified recombinant SrtA (SrtAΔN40) able to specifically hydrolyze the sorting signal of pilus 2a minor ancillary protein (AP2-2a) and catalyze in vitro the transpeptidation reaction between peptidoglycan analogues and the LPXTG motif, using both synthetic fluorescent peptides and recombinant proteins. By contrast, SrtAΔN40 does not catalyze the transpeptidation reaction with substrate-peptides mimicking sorting signals of the other pilus 2a subunits (the backbone protein and the major ancillary protein). Thus, our results add further insight into the proposed model of GBS pilus 2a assembly, in which SrtA is required for pili cell wall covalent attachment, acting exclusively on the minor accessory pilin, representing the terminal subunit located at the base of the pilus

    European emissions of the powerful greenhouse gases hydrofluorocarbons inferred from atmospheric measurements and their comparison with annual national reports to UNFCCC

    Get PDF
    Hydrofluorocarbons are powerful greenhouse gases developed by industry after the phase-out of the ozone depleting chlorofluorocarbons and hydrochlorofluorocarbons required by the Montreal Protocol. The climate benefit of reducing the emissions of hydrofluorocarbons has been widely recognised, leading to an amendment of the Montreal Protocol (Kigali Amendment) calling for developed countries to start to phase-down hydrofluorocarbons by 2019 and in developing countries to follow with a freeze between 2024 and 2028. In this way, nearly half a degree Celsius of warming would be avoided by the end of the century. Hydrofluorocarbons are also included in the basket of gases controlled under the Kyoto Protocol of the United Nations Framework Convention on Climate Change. Annex I parties to the Convention submit annual national greenhouse gas inventories based on a bottom-up approach, which relies on declared anthropogenic activities. Top-down methodologies, based on atmospheric measurements and modelling, can be used in support to the inventory compilation. In this study we used atmospheric data from four European sites combined with the FLEXPART dispersion model and a Bayesian inversion method, in order to derive emissions of nine individual hydrofluorocarbons from the whole European Geographic Domain and from twelve regions within it, then comparing our results with the annual emissions that the European countries submit every year to the United Nations Framework Convention on Climate Change, as well as with the bottom-up Emissions Database for Global Atmospheric Research. We found several discrepancies when considering the specific compounds and on the country level. However, an overall agreement is found when comparing European aggregated data, which between 2008 and 2014 are on average 84.2 ± 28.0 Tg-CO2-eqyr1againstthe95.1Tg−CO2−eqyr1 against the 95.1 Tg-CO2-eqyr1 reported by UNFCCC in the same period. Therefore, in agreement with other studies, the gap on the global level between bottom-up estimates of Annex I countries and total global top-down emissions should be essentially due to emissions from non-reporting countries (non-Annex I)
    • 

    corecore