176 research outputs found

    Structural colour from helicoidal cell-wall architecture in fruits of Margaritaria nobilis

    Get PDF
    The bright and intense blue-green coloration of the fruits of Margaritaria nobilis (Phyllanthaceae) was investigated using polarization-resolved spectroscopy and transmission electron microscopy. Optical measurements of freshly collected fruits revealed a strong circularly polarized reflection of the fruit that originates from a cellulose helicoidal cell wall structure in the pericarp cells. Hyperspectral microscopy was used to capture the iridescent effect at the single-cell level.This work was supported by the Leverhulme Trust (F/09- 741/G) and a BBSRC David Phillips fellowship (BB/K014617/1). P.V. acknowledges support from the US Air Force Office of Scientific Research under award number FA9550-10-1-0020. U.S. acknowledges support from the Adolphe Merkle foundation and the Swiss National Science Foundation through the National Centre of Competence in Research Bio-Inspired Materials

    Bright-white beetle scales optimise multiple scattering of light

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Error in funder statement in this article is corrected in http://hdl.handle.net/10871/22212Whiteness arises from diffuse and broadband reflection of light typically achieved through optical scattering in randomly structured media. In contrast to structural colour due to coherent scattering, white appearance generally requires a relatively thick system comprising randomly positioned high refractive-index scattering centres. Here, we show that the exceptionally bright white appearance of Cyphochilus and Lepidiota stigma beetles arises from a remarkably optimised anisotropy of intra-scale chitin networks, which act as a dense scattering media. Using time-resolved measurements, we show that light propagating in the scales of the beetles undergoes pronounced multiple scattering that is associated with the lowest transport mean free path reported to date for low-refractive-index systems. Our light transport investigation unveil high level of optimisation that achieves high-brightness white in a thin low-mass-per-unit-area anisotropic disordered nanostructure.We wish to thank R. Blumenfeld, T. Svensson, R. Savo and K. Vynck for fruitful discussions, B.D. Wilts for the comments on the manuscript and J. Aizenberg for support in the SEM measurements. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement n [291349] and USAF grant FA9550-10-1-002

    ERRATUM: Bright-white beetle scales optimise multiple scattering of light.

    Get PDF
    Original article available via doi:10.1038/srep06075Erratum: Scientific Reports 4, Article number: 6075 (2014); Published: 15 August 2014; Updated: 19 December 2014 doi:10.1038/srep06075. This Article contains an error in the Acknowledgements section

    An airborne regional carbon balance for central amazonia

    Get PDF
    We obtained regional estimates of surface CO2 exchange rates using atmospheric boundary layer budgeting techniques above tropical forest near Manaus, Brazil. Comparisons were made with simultaneous measurements from two eddy covariance towers below. Although there was good agreement for daytime measurements, large differences emerged for integrating periods dominated by the night-time fluxes. These results suggest that a systematic underestimation of night time respiratory effluxes may be responsible for the high Amazonian carbon sink suggested by several previous eddy covariance studies. Large CO2 fluxes from riverine sources or high respiratory losses from recently disturbed forests do not need to be invoked in order to balance the carbon budget of the Amazon. Our results do not, however, discount some contribution of these processes to the overall Amazon carbon budget

    Dye-Sensitized Solar Cell Based on a Three-Dimensional Photonic Crystal

    Get PDF
    We present a material assembly route for the manufacture of dye-sensitized solar cells, coupling a high-surface mesoporous layer to a three-dimensional photonic crystal (PC) Material synthesis aided by self-assembly on two length scales provided electrical and pore connectivity at the mesoporous and the microporous level This construct allows effective dye sensitization. electrolyte infiltration, and charge collection from both the mesoporous and the PC layers, opening up additional parameter space for effective light management by harvesting PC-induced resonance

    Improved conductivity in dye-sensitised solar cells through block-copolymer confined TiO2 crystallisation

    Get PDF
    Anatase TiO2 is typically a central component in high performance dye-sensitised solar cells (DSCs). This study demonstrates the benefits of high temperature synthesised mesoporous titania for the performance of solid-state DSCs. In contrast to earlier methods, the high temperature stability of mesoporous titania is enabled by the self-assembly of the amphiphilic block copolymer polyisoprene-block-polyethylene oxide (PI-b -PEO) which compartmentalises TiO2 crystallisation, preventing the collapse of porosity at temperatures up to 700 degrees C. The systematic study of the temperature dependence on DSC performance reveals a parameter trade-off: high temperature annealed anatase consisted of larger crystallites and had a higher conductivity, but this came at the expense of a reduced specific surface area. While the reduction in specific surface areas was found to be detrimental for liquid-electrolyte DSC performance, solid-state DSCs benefitted from the increased anatase conductivity and exhibited a performance increase by a factor of three

    ELSID-Diabetes study-evaluation of a large scale implementation of disease management programmes for patients with type 2 diabetes. Rationale, design and conduct – a study protocol [ISRCTN08471887]

    Get PDF
    BACKGROUND: Diabetes model projects in different regions of Germany including interventions such as quality circles, patient education and documentation of medical findings have shown improvements of HbA1c levels, blood pressure and occurrence of hypoglycaemia in before-after studies (without control group). In 2002 the German Ministry of Health defined legal regulations for the introduction of nationwide disease management programs (DMP) to improve the quality of care in chronically ill patients. In April 2003 the first DMP for patients with type 2 diabetes was accredited. The evaluation of the DMP is essential and has been made obligatory in Germany by the Fifth Book of Social Code. The aim of the study is to assess the effectiveness of DMP by example of type 2 diabetes in the primary care setting of two German federal states (Rheinland-Pfalz and Sachsen-Anhalt). METHODS/DESIGN: The study is three-armed: a prospective cluster-randomized comparison of two interventions (DMP 1 and DMP 2) against routine care without DMP as control group. In the DMP group 1 the patients are treated according to the current situation within the German-Diabetes-DMP. The DMP group 2 represents diabetic care within ideally implemented DMP providing additional interventions (e.g. quality circles, outreach visits). According to a sample size calculation a sample size of 200 GPs (each GP including 20 patients) will be required for the comparison of DMP 1 and DMP 2 considering possible drop-outs. For the comparison with routine care 4000 patients identified by diabetic tracer medication and age (> 50 years) will be analyzed. DISCUSSION: This study will evaluate the effectiveness of the German Diabetes-DMP compared to a Diabetes-DMP providing additional interventions and routine care in the primary care setting of two different German federal states

    Seasonal variation in objectively measured physical activity, sedentary time, cardio-respiratory fitness and sleep duration among 8–11 year-old Danish children: a repeated-measures study

    Get PDF
    Abstract Background Understanding fluctuations in lifestyle indicators is important to identify relevant time periods to intervene in order to promote a healthy lifestyle; however, objective assessment of multiple lifestyle indicators has never been done using a repeated-measures design. The primary aim was, therefore, to examine between-season and within-week variation in physical activity, sedentary behaviour, cardio-respiratory fitness and sleep duration among 8–11 year-old children. Methods A total of 1021 children from nine Danish schools were invited to participate and 834 accepted. Due to missing data, 730 children were included in the current analytical sample. An accelerometer was worn for 7 days and 8 nights during autumn, winter and spring, from which physical activity, sedentary time and sleep duration were measured. Cardio-respiratory fitness was assessed using a 10-min intermittent running test. Results The children had 5% more sedentary time, 23% less time in moderate-to-vigorous physical activity and 2% longer sleep duration during winter compared to spring and cardio-respiratory fitness was 4% higher during spring compared to autumn (P < 0.001). Sedentary time was higher and total physical activity, moderate-to-vigorous physical activity and sleep duration (boys only) were lower during weekends at all seasons (P ≤ 0.01). Intraclass correlation coefficients between seasons ranged from 0.47-0.74, leaving 45-78% to seasonal variation. Conclusions Overall, sedentary time was higher and physical activity lower during winter and during weekends. The most accurate and unbiased estimates of physical activity came from autumn; however, the considerable intra-individual variation suggests that a single measurement may not adequately characterise children’s habitual sleep and activity
    • …
    corecore