26,216 research outputs found

    Natural Density of Rectangular Unimodular Integer Matrices

    Get PDF
    In this paper, we compute the natural density of the set of k x n integer matrices that can be extended to an invertible n x n matrix over the integers. As a corollary, we find the density of rectangular matrices with Hermite normal form [O Id]. Connections with Cesaro's Theorem on the density of coprime integers and Quillen-Suslin's Theorem are also presented.Comment: 8 page

    Wing shielding of high velocity jet and shock-associated noise with cold and hot flow jets

    Get PDF
    Jet exhaust noise shielding data are presented for cold and hot flows (ambient to 1,100 K) and pressure ratios from 1.7 to 2.75. A nominal 9.5-cm diameter conical nozzle was used with simple shielding surfaces that were varied in length from 28.8 to 114.3 cm. The nozzle was located 8.8 cm above the surfaces. The acoustic data with the various sheilding lengths are compared to each other and to that for the nozzle alone. In general, short shielding surfaces that provided shielding for subsonic jets did not provide as much shielding for jets with shock noise, however, long shielding surfaces did shield shock noise effectively

    Phase ordering of two-dimensional symmetric binary fluids: a droplet scaling state

    Full text link
    The late-stage phase ordering, in d=2d=2 dimensions, of symmetric fluid mixtures violates dynamical scaling. We show however that, even at 50/50 volume fractions, if an asymmetric droplet morphology is initially present then this sustains itself, throughout the viscous hydrodynamic regime, by a `coalescence-induced coalescence' mechanism. Scaling is recovered (with length scale l∼tl \sim t, as in d=3d=3). The crossover to the inertial hydrodynamic regime is delayed even longer than in d=3d=3; on entering it, full symmetry is finally restored and we find l∼t2/3l\sim t^{2/3}, regardless of the initial state.Comment: 4 pages, three figures include

    An H-Theorem for the Lattice Boltzmann Approach to Hydrodynamics

    Full text link
    The lattice Boltzmann equation can be viewed as a discretization of the continuous Boltzmann equation. Because of this connection it has long been speculated that lattice Boltzmann algorithms might obey an H-theorem. In this letter we prove that usual nine-velocity models do not obey an H-theorem but models that do obey an H-theorem can be constructed. We consider the general conditions a lattice Boltzmann scheme must satisfy in order to obey an H-theorem and show why on a lattice, unlike the continuous case, dynamics that decrease an H-functional do not necessarily lead to a unique ground state.Comment: 6 pages, latex, no figures, accepted for publication in Europhys. Let

    The Superconducting Toroid for the New International AXion Observatory (IAXO)

    Full text link
    IAXO, the new International AXion Observatory, will feature the most ambitious detector for solar axions to date. Axions are hypothetical particles which were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. This detector aims at achieving a sensitivity to the coupling between axions and photons of one order of magnitude beyond the limits of the current detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions to detectable X-ray photons. Inspired by the ATLAS barrel and end-cap toroids, a large superconducting toroid is being designed. The toroid comprises eight, one meter wide and twenty one meters long racetrack coils. The assembled toroid is sized 5.2 m in diameter and 25 m in length and its mass is about 250 tons. The useful field in the bores is 2.5 T while the peak magnetic field in the windings is 5.4 T. At the operational current of 12 kA the stored energy is 500 MJ. The racetrack type of coils are wound with a reinforced Aluminum stabilized NbTi/Cu cable and are conduction cooled. The coils optimization is shortly described as well as new concepts for cryostat, cold mass, supporting structure and the sun tracking system. Materials selection and sizing, conductor, thermal loads, the cryogenics system and the electrical system are described. Lastly, quench simulations are reported to demonstrate the system's safe quench protection scheme.Comment: To appear in IEEE Trans. Appl. Supercond. MT 23 issue. arXiv admin note: substantial text overlap with arXiv:1308.2526, arXiv:1212.463

    New Superconducting Toroidal Magnet System for IAXO, the International AXion Observatory

    Full text link
    Axions are hypothetical particles that were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. The new International AXion Observatory (IAXO) will incorporate the most promising solar axions detector to date, which is designed to enhance the sensitivity to the axion-photon coupling by one order of magnitude beyond the limits of the current state-of-the-art detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions into X-ray photons. Inspired by the successful realization of the ATLAS barrel and end-cap toroids, a very large superconducting toroid is currently designed at CERN to provide the required magnetic field. This toroid will comprise eight, one meter wide and twenty one meter long, racetrack coils. The system is sized 5.2 m in diameter and 25 m in length. Its peak magnetic field is 5.4 T with a stored energy of 500 MJ. The magnetic field optimization process to arrive at maximum detector yield is described. In addition, materials selection and their structure and sizing has been determined by force and stress calculations. Thermal loads are estimated to size the necessary cryogenic power and the concept of a forced flow supercritical helium based cryogenic system is given. A quench simulation confirmed the quench protection scheme.Comment: Accepted for publication in Adv. Cryo. Eng. (CEC/ICMC 2013 special issue

    Evaluation of the Lidar/Radiometer Inversion Code (LIRIC) to determine microphysical properties of volcanic and desert dust

    Get PDF
    © Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 LicenseThe Lidar/Radiometer Inversion Code (LIRIC) combines the multiwavelength lidar technique with sun/sky photometry and allows us to retrieve vertical profiles of particle optical and microphysical properties separately for fine-mode and coarse-mode particles. After a brief presentation of the theoretical background, we evaluate the potential of LIRIC to retrieve the optical and microphysical properties of irregularly shaped dust particles. The method is applied to two very different aerosol scenarios: a strong Saharan dust outbreak towards central Europe and an Eyjafjallajökull volcanic dust event. LIRIC profiles of particle mass concentrations for the coarse-mode as well as for the non-spherical particle fraction are compared with results for the non-spherical particle fraction as obtained with the polarization-lidar- based POLIPHON method. Similar comparisons for fine-mode and spherical particle fractions are presented also. Acceptable agreement between the different dust mass concentration profiles is obtained. LIRIC profiles of optical properties such as particle backscatter coefficient, lidar ratio, Ångström exponent, and particle depolarization ratio are compared with direct Raman lidar observations. Systematic deviations between the LIRIC retrieval products and the Raman lidar measurements of the desert dust lidar ratio, depolarization ratio, and spectral dependencies of particle backscatter and lidar ratio point to the applied spheroidal-particle model as main source for these uncertainties in the LIRIC results.Peer reviewe

    Phase separation in systems with absorbing states

    Full text link
    We study the problem of phase separation in systems with a positive definite order parameter, and in particular, in systems with absorbing states. Owing to the presence of a single minimum in the free energy driving the relaxation kinetics, there are some basic properties differing from standard phase separation. We study analytically and numerically this class of systems; in particular we determine the phase diagram, the growth laws in one and two dimensions and the presence of scale invariance. Some applications are also discussed.Comment: Submitted to Europhysics Let

    Weak localization in ferromagnetic (Ga,Mn)As nanostructures

    Get PDF
    We report on the observation of weak localization in arrays of (Ga,Mn)As nanowires at millikelvin temperatures. The corresponding phase coherence length is typically between 100 nm and 200 nm at 20 mK. Strong spin-orbit interaction in the material is manifested by a weak anti-localization correction around zero magnetic field.Comment: 5 pages, 3 figure

    Gas gain and signal length measurements with a triple-GEM at different pressures of Ar-, Kr- and Xe-based gas mixtures

    Get PDF
    We investigate the gas gain behaviour of a triple-GEM configuration in gas mixtures of argon, krypton and xenon with ten and thirty percent of carbon dioxide at pressures between 1 and 3 bar. Since the signal widths affect the dead time behaviour of the detector we present signal length measurements to evaluate the use of the triple-GEM in time-resolved X-ray imaging.Comment: 19 pages, 21 figures, revised version, accepted for publication in Nucl. Instr. and Meth.
    • …
    corecore