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In this paper, we compute the natural density of the set of k × n

integer matrices that can be extended to an invertible n × nmatrix

over the integers. As a corollary, we find the density of rectangular

matriceswith Hermite normal form
[
Ok×(n−k) Ik

]
. Connectionswith

Cesàro’s Theorem on the density of coprime integers and Quillen–

Suslin’s Theorem are also presented.
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1. Introduction and main result

Given a commutative ring R with 1, the notion of invertible n × n matrix is well defined, and can

be characterized by the condition that the determinant of such a matrix is a unit in R. Given a k × n

matrix A, the question of whether it can be completed by an (n− k)×nmatrix into an n×n invertible

matrix over R has raised several interesting problems in the past. For instance, the celebrated Quillen–

Suslin Theorem [14,15], previously known under the name Serre Conjecture, deals with the casewhen

R = F[x1, ..., xl], with F a field and k = 1. It can be shown that this case also contains in essence the

general case 1 � k � n, see [18]. The theorem states that over this ring, the following three properties

are equivalent [14,15,18]:

1. A can be completed into an n × n invertible matrix,

2. there exists an n × k matrix B such that AB = Ik , where Ik is the k × k identity matrix,

3. the k × k minors of A have no common zeros.

< Partially supported by SNF grant No. 121874 and Armasuisse.∗ Corresponding author.

E-mail addresses: gmaze@math.uzh.ch (G. Maze), rosen@math.uzh.ch (J. Rosenthal), urs.wagner@math.uzh.ch (U. Wagner).

0024-3795/$ - see front matter © 2010 Elsevier Inc. All rights reserved.

doi:10.1016/j.laa.2010.11.015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82377124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.laa.2010.11.015
http://www.sciencedirect.com/science/journal/03608352
www.elsevier.com/locate/laa
http://dx.doi.org/10.1016/j.laa.2010.11.015


1320 G. Maze et al. / Linear Algebra and its Applications 434 (2011) 1319–1324

When the ring R is a PID it is a direct consequence of the Smith normal form (see e.g. [11]) that

Conditions 1. and 2. are again equivalent and these conditions are equivalent to the fact that the gcd

of the k × k minors is equal to 1.

In the sequel we will adopt the usual convention and call a k × n matrix A over some ring R

unimodular as soon as A can be extended to n × n invertible matrix.

Over the ring of integers various related results on unimodular matrices are known in the litera-

ture. E.g. Zhan [19] showed that any partial n × n matrix with n given entries not lying on the same

row or column can be completed into a unimodular matrix. Another result is due to Fang [6] who

showed that, if the diagonal of a square matrix is let free, then it can be completed into a unimodular

one.

Our focus in this paperwill be on the “probability” that a random k×n integermatrix is unimodular.

Related to our problem is a classical result due to Cesàro [1–3] (see also [16,17] and the historical

remarks below) which states that the “probability” that two randomly chosen integers are coprime is
1

ζ(2)
= 6

π2 , where ζ denotes Riemann’s zeta function. A re-statement of Cesàro’s result is then: the

probability that a random 1 × 2 integer matrix is unimodular is ζ(2)−1.

In order to make the notion of probability precise we first remark that the uniform distribution

over the set Z
m has little meaning. For this reason researchers often use the concept of natural density

when stating probability results inZ
m ormore general infinitemodules Rm. In the followingwe briefly

explain this concept. Let S ⊂ Z
m be a set. Define the upper (respectively lower) natural density as

D(S) = lim sup
B→∞

|S ∩ [−B, B[m |
(2B)m

, D(S) = lim inf
B→∞

|S ∩ [−B, B[m |
(2B)m

.

When both limits are equal one defines the natural density of the set S as:

D(S) := D(S) = D(S). (1)

The following properties of natural density are readily verified: If Sc denotes the complement of S

then D(Sc) = 1 − D(S), whenever S has a well-defined density. Similarly if {Si}i∈I is a set of subsets

of Z
m with well defined densities D(Si) and if S = ∪i∈ISi, then:

D(S) �
∑
i∈I

D(Si). (2)

Readers interested in more background on the notion of natural densities of sets of integer matrices

are referred to [8], even though this paper attributes the result of Cesàro toMertens, something which

was probably triggered by a remark in [7].

In fact the exact fatherhood of the result of Cesàro appears to be inexactly described in several

occasions in the literature. The storybehind this historicalmisunderstanding seems tobe the following.

The problem of evaluating the probability that two random integers are coprime appears in a 1881

question raised by Cesàro [1]. Two years later, Sylvester [16] and Cesàro [2] independently publish

their solutions. Interestingly, two proofs are presented in [16]: Sylvester’s own argument is based on

Farey series, and a more “probabilistic” argument of Franklin is also presented with his permission.

In the footnote of a 1888 paper [17], Sylvester publishes a similar proof, and mentions that Cesàro

“claimed the prior publication“ of the result. Sylvester’s argument is based on Farey series, and the

remark in [7] makes a connection between an earlier work of Mertens [12] of 1874 on the average

value of Euler ϕ function and Farey series, which probably triggered the remark in [8] but at no point

in [7] the result is attributed to Mertens. If we want to associate the aforementioned probability with

the average value of ϕ, then it is legitimate to go back to an 1849 paper of Dirichlet [5] where the value
6

π2 appears for the first time. The case of k coprime integers, k > 2, is also presented for first time by

Cesàro in 1884 [3]. The result is rediscovered in 1900 by Lehmer [9], apparently independently (see

also [13]).

The major result of our paper is a matrix version of Cesàro’s theorem:
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Proposition 1. Let 1 � k < n be integers. The natural density dk,n of k × n unimodular matrices with

integer entries is given by

dk,n =
⎛
⎝ n∏

j=n−k+1

ζ(j)

⎞
⎠−1

.

In other words, the “probability” that a “random” k × n integer matrix can be extended into a

matrix in GLn(Z) is given by (ζ(n) · · · · · ζ(n − k + 1))−1. Since ζ(n) converges rapidly towards 1, if

k = n − d, the above density converges rather fast to the limit dd with

d1 =
⎛
⎝ ∞∏

j=2

ζ(j)

⎞
⎠−1

= 0.43575707677... and d2 = ζ(2) · d1, d3 = ζ(2) · ζ(3) · d1 · · ·

When n is not too small, say n > 4, d1 is a good approximation of the proportion of integer matrices

that can be completed by a row into an invertible matrix. We would like to point out that the proof of

the above proposition is independent from the result of Cesàro and as such a new proof of his theorem

is givenwhen the above proposition is consideredwith k = 1. Proposition 1 above gives a probabilistic

extension of the simplest case of the Quillen–Suslin Theorem. The concept of natural density does not

extend naturally to the ring F[x1, . . . , xn] and thus the existence of a direct extension of our result to

the general case is unclear. In the next section we will prove Proposition 1.

2. Proof of the main result

Let us fix some notations for the rest of the article. Let 1 � t � k < n be integers. Given a k × n

matrix A with integer entries, the determinants of the
(
n

t

)(
k

t

)
t × t submatrices of A formed by the

intersection of any subset of t column and t row vectors of A are called the t-minors of A. When t = k,

they are called the full rank minors of A. The set of primes is denoted by P and when no confusion is

possible, the set Z
k×n will be identified with Z

kn.

The strategy of the proof of the above proposition is to localize the computation of the density at

every prime, and then lift the information up in order to extract the exact density over Z
kn. The proof

of the above proposition relies on the next lemmas. As noted before, the PID version of Quillen–Suslin’s

Theorem gives directly the following lemma:

Lemma 2. A k × n matrix A with integer entries is unimodular if and only if the full-rank minors of A are

coprime.

Over a field F, the rank of a k × n matrix, i.e., the maximal number of rows that are linearly

independent over F, is equal to the largest integer t such that there exists a non-zero t × t minor. A

classical computation shows that over the prime finite fieldF = Z/pZ, if Fp is the set of full rank k×n

matrices, its cardinality satisfies |Fp| = ∏k−1
j=0 (pn − pj). See [10] for the details. This can be extended

as follows:

Lemma 3. Let S be a finite set of prime numbers. The density of k × n matrices with integer entries for

which the gcd of the full rank minors are coprime to all primes in S is given by
n∏

j=n−k+1

∏
p∈S

(
1 − 1

pj

)
.

Proof. Letus callES ⊂ Z
kn the setofk×nmatrices forwhich thegcdof the full rankminors are coprime

to all primes in S. LetN = ∏
p∈S p and recall the Chinese remainder theorem (Z/NZ) ∼= ∏

p∈S (Z/pZ).
Let B be an integer that will go to infinity in the sequel. Write B = qN + r, with q, r ∈ N, 0 � r < N
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and consider the map φ obtained as the composition of maps

[−qN, qN[kn−→ (Z/NZ)kn −→ ∏
p∈S

(Z/pZ)kn ,

where the first map is the quotient modulo N and the second is the induced homomorphism given by

the Chinese remainder theorem. Because of the above remark we have

φ(ES ∩ [−qN, qN[kn) = ∏
p∈S

Fp.

The first map is a (2q)kn-to-1 map, i.e., each fiber contains exactly (2q)kn elements, and the second

map is an isomorphism. Thus

|ES ∩ [−qN, qN[kn| = (2q)kn · ∏
p∈S

|Fp|.

We have the disjoint union [−B, B[kn= [−qN, qN[kn	
(
[−B, B[kn\[−qN, qN[kn

)
. The difference of

hypercubes has a volume bounded by the volume of 2kn hyper-rectangles of side area Bkn−1 and

height r which gives 0 � |[−B, B[kn\[−qN, qN[kn| < 2knrBkn−1 and therefore we have

|ES ∩ [−B, B[kn| = |ES ∩ [−qN, qN[kn| + ρ

with 0 � ρ < 2knrBkn−1. Thus

|ES ∩ [−B, B[kn|
(2B)kn

= |ES ∩ [−qN, qN[kn|
(2qN)kn

(2qN)kn

(2B)kn
+ ρ

(2B)kn

= ∏
p∈S

|Fp|
pnk

·
(
1 − r

B

)kn

+ O(1/B).

Finally, we have

D(ES) = lim
B→∞

∏
p∈S

|Fp|
pnk

·
(
1 − r

B

)kn

+ O(1/B) = ∏
p∈S

|Fp|
pnk

=
n∏

j=n−k+1

∏
p∈S

(
1 − 1

pj

)
. �

Extending the definition of ES , let us call Et ⊂ Z
kn the set of k × n matrices for which the gcd

of the full rank minors are coprime with the first t primes 2, 3, . . . , pt . Note that the sequence Et is

a decreasing sequence of sets, i.e., Ei ⊂ Ej if i � j and if E = ∩t∈NEt , then Lemma 2 implies that

E is the set of k × n unimodular matrices with integer entries. In order to prove Proposition 1, we

have to prove that D(E) exists and compute its value dk,n = D(E). Since we know D(Et) for all t, it

is tempting to prove the proposition by simply letting t going to infinity in the expression given by

Lemma 3, but this is an invalid argument in general. Indeed the example of Et = [t, ∞[ with E = ∅
shows that it is possible to have a sequence of sets Ei ⊂ Ej if i � j with E = ∩t∈NEt and D(E) = 0 �=
1 = limt→∞ D(Et) since D(Et) = 1, ∀t. The next lemma describes how to avoid this pathological

case. Let us recall that for any real sequences an, bn, lim inf an + lim inf bn � lim inf(an + bn) and

lim sup(an + bn) � lim sup an + lim sup bn and lim sup−an = − lim inf an.

Lemma 4. Let Et be a sequence of decreasing sets in Z
m such that D(Et) exists for all t and converges to

d. Let E = ∩t∈NEt . If limt→∞ D(Et \ E) = 0, then D(E) exists and is equal to d.

Proof. We will use the disjoint union Et = E 	 (Et \ E). Since

|Et ∩ [−B, B[m| = |E ∩ [−B, B[m| + |(Et \ E) ∩ [−B, B[m|,
we have

|E ∩ [−B, B[m|
(2B)m

= |Et ∩ [−B, B[m|
(2B)m

+ −|(Et \ E) ∩ [−B, B[m|
(2B)m

.
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Taking the lim inf and the lim sup, and since limB→∞ |Et ∩ [−B,B[m|
(2B)m

= D(Et), we have

D(Et) − D(Et \ E) = D(E) � D(E) = D(Et) − D(Et \ E).

The result follows when t → ∞ since 0 � D(Et \ E) � D(Et \ E) −→ 0. �

Proof of Proposition 1. We will use the previous lemma. The set Et \ E is the set of k × n matrices

A for which there exists a prime p with p > pt so that p divides the gcd of the full rank minors of A.

For each prime p, let us define Hp to be the set of k × n matrices whose gcd of the full rank minors is

divisible by p. Then Et \ E = ∪p>ptHp. Note that Lemma 3 applied to S = {p} implies that Hp has a

density equal to

D(Hp) = 1 − D(Hc
p) = 1 −

n∏
j=n−k+1

(
1 − 1

pj

)
.

By induction on the number of factors, one readily verifies that for real numbers 0 < xj < 1, we have

the inequality
∏n

j=0(1 − xj) > 1 − ∑n
j=0 xj , which applied to the above product gives

D(Hp) = 1 −
n∏

j=n−k+1

(
1 − 1

pj

)
<

n∑
j=n−k+1

1

pj
<

1

pn−k(p − 1)
<

2

p2
.

Finally, we have

D(Et \ E) = D(∪p>ptHp) �
∑
p>pt

D(Hp) <
∑
p>pt

2

p2

which shows that limt→∞ D(Et \ E) = 0 since the last series is the tail of the convergent series∑
p∈P

2

p2
. We can therefore apply the previous lemma and conclude that dk,n = D(E) exists and is

equal to

dk,n = D(E) =
n∏

j=n−k+1

∏
p∈P

(
1 − 1

pj

)
=

n∏
j=n−k+1

ζ(j)−1. �

3. Concluding remarks and further results

Proposition 1 does not cover the square case k = n. Indeed, the zeta function is not defined when

n − k + 1 = 1 since ζ has a pole of order 1 at x = 1. The following result covers the square case.

Lemma 5. The natural density of n × n unimodular matrices is dn,n = 0.

Before we give a proof we remark that the product formula in Proposition 1 naturally has an exten-

sion to zero as limx→1(ζ(x))−1 = 0.

Proof. Each n × n matrix with n2 − 1 entries in the range [−B, B[ can be completed by at most two

values in order for this matrix to be unimodular, due to the Lagrange expansion of the determinant,

which must be ±1. As such there are at most 2(2B)n
2−1 unimodular matrices with entries in [−B, B[.

The conclusion follows since dn,n � limB→∞ 2(2B)n(n−1)/(2B)n
2 = 0. �

The result of Proposition 1 can also be used in the determination of the natural density of k × n

matrices whose Hermite normal form (HNF) is very simple. Recall that the HNF of a k × nmatrix A is

the unique k × nmatrix H of the following form
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⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 h1 h1,2 . . . h1,n−k

0 0 . . . 0 0 h2 . . . h2,n−k

...
...

. . .
...

...
. . .

. . .
...

0 0 . . . 0 0 . . . 0 hk

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where 0 � hi,j < hi, such that there exists U ∈ Gln(Z) with A = HU, see e.g. [4]. We have then the

following result.

Theorem 6. The density of k × n matrices whose Hermite normal form is the block matrix [Ok×(n−k) Ik]
is dk,n.

Proof. The result follows from the fact that the set E of k× n unimodular matrices over Z is the equal

to the set L of k × n matrices whose HNF is the block matrix [Ok×(n−k) Ik]. Let us show that E ⊂ L.

If A ∈ E then there exists a unimodular square matrix B such that A consists in the last k rows of B.

The HNF of B is the identity matrix In. Indeed, it is a upper diagonal square matrix with integer entries

whose determinant is 1, which forces the diagonal entries to be 1. The size condition of the coefficient

of theHNF forces the entries above the diagonal to be 0. Thuswe have BU−1 = In for someU ∈ Gln(Z),
which gives AU−1 = [Ok×(n−k) Ik]. The uniqueness of the HNF shows that A ∈ L. Let us show now

that L ⊂ E by showing that the gcd of the k × k minors of a matrix in L are coprime. The equation

A = [Ok×(n−k) Ik]U shows that the k × k minors of A are equal to the k × k minors of [Ok×(n−k) Ik]
which are 0 or 1, and thus coprime. This finishes the proof of the corollary. �

Taking into account that the Smith normal formof amatrix [4] is obtained from theHermite normal

form via row operations, an immediate consequence of this theorem is:

Corollary 7. The density of k × n matrices whose Smith normal form is the block matrix [Ok×(n−k) Ik] is
dk,n.
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