111 research outputs found
Analysis and Classification of Breast Cancer Disease Via Different Datasets and Classifier Models
Nowadays, Tumour is one of the important reasons of human death worldwide, producing about 9.6 million people in 2018. BC (breast cancer) is the common reason for cancer deaths in females. BC is a type of cancer that can be treated when detected early. The main motive of this analysis is to detect cancer early in life using ML (machine learning) techniques. The features of the people included in the WDBC (Wisconsin diagnostic breast cancer) and Coimbra BC datasets were classified by SVOF-KNN, KNN, and NaĂŻve Bayes techniques. The pre-processing data phase was applied to the datasets before classification. After the data pre-processing steps, three classification methods were applied to the data. Specificity and Sensitivity rates were used to calculate the success of the techniques. As an outcome of the BC diagnosis classification, the SVOF-KNN technique was found with a 91 percent specificity rate and 90 percent sensitivity rate. When the outcomes attained from feature extraction and selection are calculated. It is seen that feature extraction, selection, and data pre-processing techniques improve the specificity and sensitivity rate of the detection system
Hilbert Series for Moduli Spaces of Two Instantons
The Hilbert Series (HS) of the moduli space of two G instantons on C^2, where
G is a simple gauge group, is studied in detail. For a given G, the moduli
space is a singular hyperKahler cone with a symmetry group U(2) \times G, where
U(2) is the natural symmetry group of C^2. Holomorphic functions on the moduli
space transform in irreducible representations of the symmetry group and hence
the Hilbert series admits a character expansion. For cases that G is a
classical group (of type A, B, C, or D), there is an ADHM construction which
allows us to compute the HS explicitly using a contour integral. For cases that
G is of E-type, recent index results allow for an explicit computation of the
HS. The character expansion can be expressed as an infinite sum which lives on
a Cartesian lattice that is generated by a small number of representations.
This structure persists for all G and allows for an explicit expressions of the
HS to all simple groups. For cases that G is of type G_2 or F_4, discrete
symmetries are enough to evaluate the HS exactly, even though neither ADHM
construction nor index is known for these cases.Comment: 53 pages, 9 tables, 24 figure
Engineering crops for tolerance against abiotic stress through gene manipulation
Plant genetic engineering took birth in the mid-eighties when, for the first time, plants were successfully engineered for improved virus, herbicide and insect resistance. This sphere has been ever-increasing since then. Abiotic stresses (such as high salt levels, low water availability leading to drought, excess water leading to flooding, high and low temperature regimes, etc.) adversely affect crop plants. The genetic responses of plants to these stresses are complex involving simultaneous expression of a number of genes. Till the early-nineties it was inconceivable that there would be any success in attaining the goal of improving resistance of crop plants to abiotic stresses. Continuing efforts of the stress biologists have resulted in engineering of plants resistant to low temperature, high temperature and excess salinity. A satisfactory progress has also been achieved in the area of generating plants resistant to water stress and flooding. While what has been achieved is impressive, it is still a challenging task to pyramid useful genes for high-level resistance to such stresses. The limiting factor in extension of biotechnology to abiotic stresses is the lack of information on what are the 'useful genes'-genes which would lead to better stress tolerance. We have reviewed how these genes are being searched to enable further development of strategies for stress management in crop plants. This is important because the strategics for coping with the abiotic stresses (and also for several other applications in plant biotechnology) have also come through the research work of scientists working on as diverse organisms as bacteria and fish
Phytochemicals as antibiotic alternatives to promote growth and enhance host health
There are heightened concerns globally on emerging drug-resistant superbugs and the lack of new antibiotics for treating human and animal diseases. For the agricultural industry, there is an urgent need to develop strategies to replace antibiotics for food-producing animals, especially poultry and livestock. The 2nd International Symposium on Alternatives to Antibiotics was held at the World Organization for Animal Health in Paris, France, December 12-15, 2016 to discuss recent scientific developments on strategic antibiotic-free management plans, to evaluate regional differences in policies regarding the reduction of antibiotics in animal agriculture and to develop antibiotic alternatives to combat the global increase in antibiotic resistance. More than 270 participants from academia, government research institutions, regulatory agencies, and private animal industries from >25 different countries came together to discuss recent research and promising novel technologies that could provide alternatives to antibiotics for use in animal health and production; assess challenges associated with their commercialization; and devise actionable strategies to facilitate the development of alternatives to antibiotic growth promoters (AGPs) without hampering animal production. The 3-day meeting consisted of four scientific sessions including vaccines, microbial products, phytochemicals, immune-related products, and innovative drugs, chemicals and enzymes, followed by the last session on regulation and funding. Each session was followed by an expert panel discussion that included industry representatives and session speakers. The session on phytochemicals included talks describing recent research achievements, with examples of successful agricultural use of various phytochemicals as antibiotic alternatives and their mode of action in major agricultural animals (poultry, swine and ruminants). Scientists from industry and academia and government research institutes shared their experience in developing and applying potential antibiotic-alternative phytochemicals commercially to reduce AGPs and to develop a sustainable animal production system in the absence of antibiotics.Fil: Lillehoj, Hyun. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Liu, Yanhong. University of California; Estados UnidosFil: Calsamiglia, Sergio. Universitat AutĂČnoma de Barcelona; EspañaFil: Fernandez Miyakawa, Mariano Enrique. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina. Instituto Nacional de TecnologĂa Agropecuaria. Centro de InvestigaciĂłn en Ciencias Veterinarias y AgronĂłmicas. Instituto de PatobiologĂa; ArgentinaFil: Chi, Fang. Amlan International; Estados UnidosFil: Cravens, Ron L.. Amlan International; Estados UnidosFil: Oh, Sungtaek. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Gay, Cyril G.. United States Department of Agriculture. Agricultural Research Service; Argentin
M5-branes, toric diagrams and gauge theory duality
In this article we explore the duality between the low energy effective
theory of five-dimensional N=1 SU(N)^{M-1} and SU(M)^{N-1} linear quiver gauge
theories compactified on S^1. The theories we study are the five-dimensional
uplifts of four-dimensional superconformal linear quivers. We study this
duality by comparing the Seiberg-Witten curves and the Nekrasov partition
functions of the two dual theories. The Seiberg-Witten curves are obtained by
minimizing the worldvolume of an M5-brane with nontrivial geometry. Nekrasov
partition functions are computed using topological string theory. The result of
our study is a map between the gauge theory parameters, i.e., Coulomb moduli,
masses and UV coupling constants, of the two dual theories. Apart from the
obvious physical interest, this duality also leads to compelling mathematical
identities. Through the AGTW conjecture these five-dimentional gauge theories
are related to q-deformed Liouville and Toda SCFTs in two-dimensions. The
duality we study implies the relations between Liouville and Toda correlation
functions through the map we derive.Comment: 58 pages, 17 figures; v2: minor corrections, references adde
Semichiral fields on S^2 and generalized Kahler geometry
Abstract: We study a class of two-dimensional N=(2,2) supersymmetric gauge theories, given by semichiral multiplets coupled to the usual vector multiplet. In the UV, these theories are traditional gauge theories deformed by a gauged Wess-Zumino term. In the IR, they give rise to nonlinear sigma models on noncompact generalized K\ue4hler manifolds, which contain a three-form field H and whose metric is not K\ue4hler. We place these theories on S2 and compute their partition function exactly with localization techniques. We find that the contribution of instantons to the partition function that we define is insensitive to the deformation, and discuss our results from the point of view of the generalized K\ue4hler target space. \ua9 2016, The Author(s)
Kinetochore fiber formation in animal somatic cells : dueling mechanisms come to a draw
Author Posting. © The Author, 2005. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Chromosoma 114 (2005): 310-318, doi:10.1007/s00412-005-0028-2.The attachment to and movement of a chromosome on the mitotic spindle is
mediated by the formation of a bundle of microtubules (MTs) that tethers the
kinetochore on the chromosome to a spindle pole. The origin of these âkinetochore
fibersâ (K-fibers) has been investigated for over 125 years. As noted in 1944 by
Schrader, there are only three possible ways to form a K-fiber: either it a) grows from
the pole until it contacts the kinetochore; b) grows directly from the kinetochore; or c)
it forms as a result of an interaction between the pole and the chromosome. Since
Schraderâs time it has been firmly established that K-fibers in centrosome-containing
animal somatic cells form as kinetochores capture MTs growing from the spindle pole
(route a). It is now similarly clear that in cells lacking centrosomes, including plants
and many animal oocytes, K-fibers âself-assembleâ from MTs generated by the
chromosomes (route b). Can animal somatic cells form K-fibers in the absence of
centrosomes by the âself-assemblyâ pathway? In 2000 the answer to this question
was shown to be a resounding âyesâ. With this result, the next question became
whether the presence of a centrosome normally suppresses K-fiber self-assembly, or
if this route works concurrently with centrosome-mediated K-fiber formation. This
question, too, has recently been answered: observations on untreated live animal cells
expressing GFP-tagged tubulin clearly show that kinetochores can nucleate the
formation of their associated MTs in the presence of functional centrosomes. The
concurrent operation of these two âduelingâ routes for forming K-fibers in animals
helps explain why the attachment of kinetochores and the maturation of K-fibers
occur as quickly as it does on all chromosomes within a cell.The work is sponsored by
NIH grant GMS 40198
- âŠ