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1 Introduction

Starting with the work of Pestun [1], there has been substantial application of localiza-

tion techniques [2, 3] to supersymmetric field theories in various dimensions, leading to

the exact computation of Euclidean path-integrals on various manifolds and backgrounds.

This new wave of exact results has affected two-dimensional physics [4–20], in particular

in the study of two-dimensional N = (2, 2) gauge theories [4, 5]. One of the most in-

teresting applications in two dimensions is to gauged linear sigma models (GLSMs) with

chiral multiplets, realizing nonlinear sigma models (NLSMs) on Kähler manifolds in the

infrared (IR) [21]. In this case, the exact computation of field theory observables leads to

interesting quantities associated to the corresponding Kähler target spaces. For instance,

in (untwisted) A-type localization the S2 partition function computes the exact Kähler

potential on the quantum Kähler moduli space of Calabi-Yau manifolds [6, 22], while in

B-type localization it computes the exact Kähler potential on the complex structure mod-

uli space [13]. Among other applications, this has been used to compute Gromov-Witten

invariants [22, 23] and the Seiberg-Witten prepotential in novel ways [24]. The extension of

localization techniques to theories involving twisted chiral multiplets has shed new light on

mirror symmetry, showing that the S2 partition function for the Landau-Ginzburg models

proposed by Hori and Vafa [25, 26] reproduces the partition function of the corresponding

mirror Abelian GLSMs [6].

In this paper we extend the localization techniques to more general N = (2, 2) gauge

theories by including semichiral multiplets. A salient feature of these GLSMs is that they

include a gauged Wess-Zumino term and they realize NLSMs on generalized Kähler man-

ifolds in the IR, rather than Kähler when only chiral (or only twisted chiral) multiplets

are present. In fact, chiral, twisted chiral, and semichiral multiplets are all required (and

sufficient) to describe the most general N = (2, 2) NLSMs with torsion. The gauge theories

we consider here are the S2 versions of the GLSMs discussed in detail in [27].1

A generalized Kähler structure on a manifold M consists of the triplet (g, J±, H),

where g is a Riemannian metric, J± are two integrable complex structures, and H is a

closed three-form (that can be locally written as H = db), subject to some constraints.

This is the most general target space for N = (2, 2) NLSMs, containing Kähler geometry

as the special case H = 0 and J+ = ±J−. The complex structures are covariantly constant,

∇±J± = 0, each with respect to a connection with torsion ∇± = ∇0± 1
2g

−1db, where ∇0 is

the Levi-Civita connection. The presence of torsion implies that the geometry is generically

not Kähler: the forms ω± = gJ± are not closed. This structure was originally discovered

in [35], where it was termed bi-Hermitian geometry. More recently, it has been reformulated

as the analog of Kähler geometry in the context of generalized complex geometry [36, 37].2

Locally, on a generalized Kähler manifold one can always choose coordinates which are

adapted to the decomposition of the tangent bundle

TM = ker(J+ − J−)⊕ ker(J+ + J−)⊕ coIm[J+, J−] ,

1For some previous work on GLSMs with semichiral multiplets in flat space see [28–33]; for a study of

gauge theories with a gauged Wess-Zumino term with on-shell N = (2, 2) supersymmetry see [34].
2For introductory lectures on generalized complex geometry and its relation to supersymmetry, see for

instance [38, 39]. For a review of generalized Kähler geometry and general N = (2, 2) NLSMs see [40].
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where the last factor is the co-image [41, 42]. We denote the corresponding coordinates by

Φ⊕ χ⊕ (XL,XR), respectively. In terms of the N = (2, 2) sigma model, these correspond

to different matter multiplets: chiral, twisted chiral, left semichiral and right semichiral,

respectively. From the perspective of generalized Kähler geometry, semichiral fields are

as fundamental as chiral and twisted chiral: the latter parametrize directions along which

the two complex structures commute, while the former parametrize directions along which

they do not. As in Kähler geometry, the full geometric data is locally encoded in a single

function: the generalized Kähler potential K [40]. Apart from obeying certain inequalities

for the metric to be positive definite, K = K(Φ, Φ̄;χ, χ̄;XL, X̄L,XR, X̄R) is otherwise an

arbitrary real function of the coordinates on the manifold. As in the Kähler case, K serves

as the action for the NLSM in superspace. The case of complex dimension three, and in

particular the case of one pair of semichiral fields and one chiral field, is especially relevant

to supergravity [43].

It is shown in [27] that GLSMs with semichiral fields coupled to the usual vector

multiplet are continuous deformations of certain GLSMs with chiral fields only, which re-

alize noncompact Calabi-Yau manifolds. The deformation preserves the R-symmetry at

the quantum level, but deforms the geometric structure of the target from Kähler to gen-

eralized Kähler by introducing torsion. Here we place those gauge theories on S2 (with

the untwisted background of [4, 5]), and compute the exact partition function by super-

symmetric localization “on the Coulomb branch”. It turns out that gauge theories with

semichiral fields do not admit enough real masses to lift all massless modes (which appear

as non-compact directions in the IR NLSM), therefore their partition function is threatened

by divergences. We propose a contour prescription to remove those divergences. We show

that the parameters controlling the non-Kähler deformation enter in a Q-exact term. As a

consequence, the S2 partition function should not depend on this deformation and should

coincide with the partition function in the Kähler case. We verify this fact explicitly.

We will also discuss some consequences of our result for topological A/B-models on

generalized Kähler manifolds. As shown in [44] the topological A-model localizes to gen-

eralized holomorphic maps,

(1− iJ+)∂̄X = 0 , (1 + iJ−)∂X = 0 , (1.1)

where X are real coordinates on the target M. For generic J±, these equations are very

restrictive and the only solutions are constant maps. In our models, the S2 partition

function defined with our contour prescription does receive instanton corrections — equal

to the ones in the Calabi-Yau before deformation — and yet there are no real compact

solutions to (1.1).3 A possible resolution of this puzzle is that, in fact, our partition function

receives contributions from complexified solutions to (1.1), which are less restricted and

may well exist even for generic J±. We leave this puzzle as an open question.

3We stress that our analysis of the generalized Kähler structure is carried out only in the UV of the

NLSM, which is enough to capture the instanton corrections. An important question is what the behavior

of these theories is in the deep IR. The conditions for conformal invariance at the quantum level, and the

relation to the generalized Calabi-Yau condition of Hitchin [45], is discussed in [43, 46, 47]. This, however,

goes beyond the scope of this paper.
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The paper is organized as follows. In section 2 we review the field components, su-

persymmetry transformations, gauged supersymmetric actions for semichiral fields on R2

and discuss the NLSMs these theories realize. In section 3 we place these gauge theories

on S2. In section 4 we study the BPS configurations, localize the path-integral, and dis-

cuss issues of the integration contour and instanton contributions. In section 5 we review

some aspects of topologically twisted NLSMs on generalized Kähler manifolds, and study

the phenomenon of type-change in an example of the resolved conifold with a generalized

Kähler structure. We conclude with a discussion in section 6.

2 Semichiral fields on R2

We begin by reviewing some basic aspects of N = (2, 2) supersymmetry and defining our

notation and conventions. We then discuss gauge theories for semichiral fields and their

description as NLSMs.

The algebra of N = (2, 2) superderivatives is

{D±, D̄±} = ±2i∂±± , (2.1)

where ± are spinor indices, D±, D̄± are superderivatives and ∂±± = 1
2(∂1 ∓ i∂2) are space-

time derivatives; the precise definitions are given in appendix A. The SUSY transformations

are generated by

δ = ǭ+Q+ + ǭ−Q− + ǫ+Q̄+ + ǫ−Q̄− , (2.2)

where ǫ, ǭ are anticommuting Dirac spinors while Q, Q̄ are the supercharges satisfying

{Q±, Q̄±} = ∓2i∂±± and anticommuting with the spinor derivatives: {Q±,D±} = 0, etc.

2.1 Supermultiplets

The basic matter supermultiplets are chiral, twisted chiral and semichiral fields. In

Lorentzian signature these fields are defined by the following set of constraints:

Chiral : D̄+Φ = 0 , D̄−Φ = 0 , D+Φ̄ = 0 , D−Φ̄ = 0 ,

Twisted Chiral : D̄+χ = 0 , D−χ = 0 , D+χ̄ = 0 , D̄−χ̄ = 0 ,

Left semichiral : D̄+XL = 0 , D+X̄L = 0 ,

Right semichiral : D̄−XR = 0 , D−X̄R = 0 .

(2.3)

In Lorentzian signature, complex conjugation acts on superderivatives as D
†
± = D̄± and

on superfields as X† = X̄. The SUSY constraints (2.3) are compatible with complex

conjugation.

In Euclidean signature, however, the conjugation of superderivatives changes the helic-

ity, namely D
†
± = D̄∓, and taking the complex conjugate of the constraints (2.3) may lead

to additional constraints. In the case of a twisted chiral field χ, for instance, this implies

that the field be constant. The well-known resolution is to complexify the multiplet and
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consider χ and χ̄ as independent fields. Although this problem does not arise for semichi-

ral fields, we nonetheless choose to complexify them.4 That is, we will consider XL a left

semichiral field and X̄L an independent left anti-semichiral field, and similarly for XR and

X̄R. The SUSY constraints (and their Euclidean conjugates) read:

D̄+XL = 0 , D+X̄L = 0 , D̄−XR = 0 , D−X̄R = 0 ,

D−X
†
L = 0 , D̄−X̄

†
L = 0 , D+X

†
R = 0 , D̄+X̄

†
R = 0 .

(2.4)

The target space geometry of these models is the complexification of the target space

geometry of the corresponding models defined in Lorentzian signature. See [48] for a

discussion of these issues.

2.2 Components and supersymmetry transformations

Semichiral fields were originally introduced in [49]. Since they are less known than chiral

and twisted chiral fields, we review some of their basic properties here. Each left or right

semichiral multiplet consists of 3 complex scalars, 4 Weyl fermions, and one complex chiral

vector. We denote these by

XL : (XL, ψ
L
±, FL, χ̄−,M−+,M−−, η̄−) , X̄L : (X̄L, ψ̄

L
±, F̄L, χ−, M̄−+, M̄−−, η−) ,

XR : (XR, ψ
R
±, FR, χ̄+,M+−,M++, η̄+) , X̄R : (X̄R, ψ̄

R
±, F̄R, χ+, M̄+−, M̄++, η+) ,

(2.5)

where ψα, χα, ηα are fermionic and X,F,Mαβ are bosonic fields, all valued in the same

representation R of a gauge group G (see appendix A.3 for details). Compared to the

field content of chiral and twisted chiral fields, semichiral fields have twice the number of

bosonic and fermionic components.

To treat left and right semichiral fields in a unified way, we define a superfield X that

satisfies at least one chiral constraint (either D̄+X = 0 or D̄−X = 0, or both), but we do

not specify which one until the end of the calculation. Similarly, X̄ is an independent field

satisfying at least one antichiral constraint (either D+X̄ = 0 or D−X̄ = 0, or both). We

denote the field content by

X : (X,ψα, F, χ̄α,Mαβ , η̄α) , with α, β = ± , (2.6)

and similarly for X̄. By setting χ̄α = Mαβ = η̄α = 0, the multiplet X describes a chiral mul-

tiplet Φ : (X,ψα, F ). By setting χ̄+ = M+− = M++ = η̄+ = 0 it describes a left semichiral

multiplet, and by setting χ̄− = M−+ = M−− = η̄− = 0 it describes a right semichiral field.5

We couple the multiplet X to the usual vector multiplet V . One could also consider

couplings to other vector multiplets, but we do not do that here (see instead [27]). The

4One may choose not to do so. Then, a left semichiral field YL satisfies D̄+YL = 0 and its (Euclidean)

Hermitian conjugate ȲL satisfies D−ȲL = 0, and similarly for a right semichiral field. However, the target

space geometry of these models is not well understood. Since ultimately we are interested in learning about

the target space geometry of models in Lorentzian signature, we choose to complexify semichiral fields.
5With appropriate identifications, it can also describe a twisted chiral multiplet. However, since we are

interested in minimally coupling X to the usual vector multiplet, we do not consider that case here.
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field content of the usual vector multiplet is (Aµ, σ1, σ2, λ±, D), where σ1, σ2 are real in

Lorentzian but complex in Euclidean signature and we define

σ = iσ1 − σ2 , σ̄ = −iσ1 − σ2 . (2.7)

The SUSY transformation rules for the multiplet X, minimally coupled to the vector mul-

tiplet V , are derived in appendix A.3 and read:

δψα =
(
[iγµDµX + iσ1X + σ2Xγ3] ǫ

)
α
− ǫβMβα + ǭαF δX = ǭψ + ǫχ̄

δF = [−iσ1ψ − σ2ψγ3 − iλX − i(Dµψ)γ
µ + η̄] ǫ δχ̄α = ǭβMαβ

δMαβ = −η̄αǭβ − iσ1χ̄αǫβ − σ2χ̄αγ3ǫβ − i(Dµχ̄α)(γ
µǫ)β

δη̄α = −i(ǫλ)χ̄α + i(ǫγµ)βDµMαβ − iσ1ǫ
βMαβ − σ2(γ3ǫ)

βMαβ ,

(2.8)

and similarly for the multiplet X̄:

δψ̄α =
([
iγµDµX̄ − iσ1X̄ + σ2X̄γ3

]
ǭ
)
α
− ǭβM̄βα + ǫαF̄ δX̄ = ǫψ̄ + ǭχ

δF̄ =
[
iσ1ψ̄ − σ2ψ̄γ3 − iλ̄X̄ − i(Dµψ̄)γ

µ + η
]
ǭ δχα = ǫβM̄αβ

δM̄αβ = −ηαǫβ + iσ1χαǭβ − σ2χαγ3ǭβ − i(Dµχα)(γ
µǭ)β

δηα = −i(ǭλ̄)χα + i(ǭγµ)βDµM̄αβ + iσ1ǭ
βM̄αβ − σ2(γ3ǭ)

βM̄αβ .

(2.9)

Here Dµ = ∂µ − iAµ is the gauge-covariant derivative. To keep the notation compact in

what follows, it is convenient to introduce the operator

Pαβ ≡
(
2iD++ σ

σ̄ −2iD−−

)
.

2.3 Supersymmetric actions

The gauge-invariant kinetic action for semichiral fields in flat space is built out of terms of

the form:

LR2

X =

∫
d4θ X̄ X

= DµX̄DµX + X̄
(
σ2
1 + σ2

2 + iD
)
X + F̄F − M̄αβM

βα − X̄PαβM
αβ + M̄αβPβαX

− ψ̄ (iγµDµ − iσ1 + γ3σ2)ψ + iψ̄λX − iX̄λ̄ψ − ηψ − ψ̄η̄

+ χ̄ (iγµDµ − iσ1 + γ3σ2)χ+ iX̄λχ̄− iχλ̄X . (2.10)

Setting some fields to zero, according to the discussion below (2.6), gives the corresponding

action for chiral and semichiral fields. An important aspect of semichiral fields, however,

is that in order to obtain standard quadratic kinetic terms after having integrated out the

auxiliary fields, they must come in pairs (XL,XR). Consider for instance a (neutral, for

simplicity) left semichiral field with kinetic action

∫
d4θ X̄LXL .

– 6 –



J
H
E
P
0
1
(
2
0
1
6
)
0
6
0

It is easy to see that the equations of motion set M−+ = M̄−+ = ψ+ = ψ̄+ = 0 and give

the first order equations

∂++XL = ∂++X̄L = ∂++M−− = ∂++M̄−− = 0

∂++ψ− = ∂++ψ̄− = ∂++χ− = ∂++χ̄− = 0 ,

which describe two left-moving bosonic and two left-moving fermionic modes. Although

interesting, we leave the study of such Lagrangians for future work.

To obtain sigma models with standard kinetic terms, one must consider models with

the same number of left and right semichiral fields and an appropriate coupling between

them, either of the form (X̄LXR + c.c.) or (XLXR + c.c.). In such models, integrating

out the auxiliary fields leads to standard kinetic terms as well as (gauged) Wess-Zumino

couplings. Note that depending on the type of the off-diagonal term one chooses, left

and right semichiral fields must be either in the same or in conjugate representations of

the gauge group. Thus, from now on we restrict ourselves to models containing pairs of

semichiral fields (XL,XR) either in a representation (R,R) or (R,R) of the gauge group.

Same representation. Consider a pair of semichiral fields (XL,XR) in representation

(R,R). The most general gauge-invariant quadratic action follows from the Lagrangian

LR2

LR = −
∫

d4θ
[
X̄LXL + X̄RXR + α

(
X̄LXR + X̄RXL

)]
, (2.11)

where α > 1 is a real parameter.6 Before gauging, the action (2.11) describes flat space with

a constant B-field controlled by α, which of course could be gauged away; the significance

of the parameter α is that it determines a choice of complex structures J± on the space.7

We note that due to the the off-diagonal term, XL and XR must have the same R-charge.

The general case with multiple pairs of semichiral fields is very similar. Under the

assumption that the metric is positive definite, one can always diagonalize the kinetic term

and reduce it to multiple decoupled copies of (2.11) by field redefinitions; see appendix B.1

for details.

To gain some intuition on GLSMs for semichiral fields, and their difference with stan-

dard GLSMs for chiral fields, we reduce the Lagrangian (2.11) to component fields and

integrate out the auxiliary components in the semichiral multiplet. This gives

LR2

LR =
(
gmn+ bmn

)
D++X

mD−−X
n+

α

2

(
X̄
(
|σ|2+D

)
X + ¯̃X

(
|σ|2+D

)
X̃
)
+ . . . , (2.12)

6One may begin with the general Lagrangian

L =

∫

d
4
θ
[

β X̄LXL + γ X̄RXR − α X̄LXR − α
∗
X̄RXL

]

where β, γ are real parameters and α is complex. This describes flat space and requiring that the metric be

positive requires β, γ 6= 0. Then, by rescaling the fields one can set β = ±1 and γ = ±1. By a further phase

redefinition of the fields, α can be made real and non-negative. Finally, the requirement of a positive-definite

metric implies β = γ = −1, α > 1.
7See [27] and references therein for a more detailed discussion on this point.

– 7 –
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where we have omitted fermionic kinetic terms and Yukawa couplings, and defined

gmn =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




, bmn =
√
α2 − 1




0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0




, (2.13)

where we denote Xm = (X, X̄, X̃, ¯̃X) and we made the change of variables

XL =

√
α

4(α+ 1)
X +

√
α

4(α− 1)
¯̃X , XR =

√
α

4(α+ 1)
X −

√
α

4(α− 1)
¯̃X . (2.14)

We note that after this field redefinition one may take the special limit α → 1, for which

bmn → 0. In fact, in this limit the whole Lagrangian (2.12) coincides with the component

Lagrangian of a standard GLSM for chiral multiplets (with lowest components X, X̃) in

gauge representations (R,R). Thus, the parameter α controls a deformation of such model

which includes the addition of a gauged Wess-Zumino term. The deformation is not generic:

it is such that by adding suitable auxiliary fields N = (2, 2) SUSY can be realized off-shell

in terms of semichiral fields.8

As we shall discuss in section 2.4, these models give rise to NLSMs on generalized

Kähler manifolds with non-zero three-form H, controlled by the parameter α. In the limit

α → 1, the H field vanishes and g becomes a Kähler metric, as expected.

Conjugate representations. For a pair of semichiral fields (XL,XR) in conjugate rep-

resentations (R,R), the most general gauge-invariant quadratic Lagrangian is

LR2

LR =

∫
d4θ

[
X̄LXL + X̄RXR + β

(
XLXR + X̄RX̄L

)]
, (2.15)

where β > 1 is a real parameter. In this model XL and XR have opposite R-charges. Once

again, reducing the Lagrangian to components and integrating out the auxiliary fields,

one observes that the theory is a deformation of a standard GLSM with chiral fields in

representation (R,R) by a gauged Wess-Zumino term controlled by the parameter β, which

vanishes in the limit β → ∞. In fact, the gauge theories (2.11) and (2.15) are related off-

shell by a simple field redefinition corresponding to a change of coordinates on the target

space and sending α → 1 corresponds to sending β → ∞ (see appendix B.2). Thus, without

loss of generality, we shall consider only one of these actions, choosing the most convenient

one for a particular calculation. In the multiflavor case, by field redefinitions, one can

always rewrite the Lagrangian as multiple decoupled copies of (2.15).

Finally, we comment that traditional superpotential terms for semichiral fields are not

possible because they break supersymmetry. Fermionic superpotential terms (integrals over

d3θ) are possible if a fermionic semichiral multiplet is present, but this is not the case here.

8For a discussion of more general gauge theories with gauged Wess-Zumino terms, but only on-shell

N = (2, 2) SUSY, see [34].
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2.4 NLSM description

As mentioned above, one of the main motivations to study gauge theories with semichiral

fields is that they realize NLSMs on generalized Kähler manifolds, as opposed to Kähler

manifolds when only chiral (or only twisted chiral) fields are present. Let us briefly illustrate

this point in the case G = U(1), although the discussion holds with arbitrary gauge group.

Consider NF pairs of semichiral fields (Xi
L,X

i
R), i = 1, . . . , NF , charged under a U(1)

vector multiplet with charges (Qi,−Qi). The Lagrangian for the GLSM is given by

L = LVM +

NF∑

i=1

∫
d4θ

[
X̄i
LX

i
L + X̄i

RX
i
R + βi

(
Xi
LX

i
R + X̄i

RX̄
i
L

)]
+

i

2

∫
d2θ̃ tΣ+ c.c. , (2.16)

with βi > 1, where

LVM = − 1

2e2

∫
d4θ Σ̄Σ , Σ = D̄+D−V , (2.17)

and t = iξ + θ
2π is the complexified Fayet-Iliopoulos (FI) parameter. In addition, one

may have any number of chiral multiplets charged under the same vector multiplet V with

arbitrary charges. In the case that only semichiral fields are present, a better formulation

of these theories in terms of a new vector multiplet is discussed in [27].

Just as in GLSMs with chiral fields [21], on the Higgs branch of the theory the vector

multiplet becomes massive and at low energies (compared to the gauge coupling e) it can be

integrated out. The effective theory is a NLSM on the space of vacua, which is determined

by the vanishing of the scalar potential U , modulo the action of the gauge group. The full

moduli space of the GLSMs at hand is analyzed in [27]. For the theory in (2.16), there is

a Higgs branch given by9

M =

{∑
i
Qi

(∣∣Xi
L

∣∣2 −
∣∣Xi

R

∣∣2
)
− ξ = 0

}/
U(1) , (2.18)

where U(1) acts by Xi
L → eiαQ

i
Xi

L, X
i
R → e−iαQi

Xi
R. The complex dimension of M is

2NF − 1. Topologically, M coincides with the Higgs branch of a GLSM with chiral (as op-

posed to semichiral) fields (Φi, Φ̃i) with gauge charges (Qi,−Qi). However, in the semichiral

model the space is endowed with a family of generalized Kähler structures controlled by the

parameters βi. In the limit βi → ∞ the space becomes Kähler, but at finite βi there are two

independent complex structures J± and, due to the presence of semichiral fields, [J+, J−] 6=
0 at generic points on the manifold. We will give an explicit example in section 5.2.

One may also consider a model with gauge charges (Qi, Qi). As discussed above, this

is completely equivalent to the model with charges (Qi,−Qi). Thus, the moduli space of

9One way to see this is to compute the scalar potential explicitly by going down to components and

working, say, in Wess-Zumino gauge. Alternatively, one may work in superspace, by writing X(0) i = Xi

and X̄(0) i = X̄ie−QiV in (2.16) to introduce the vector multiplet explicitly (here we are following similar

notation to that in [21]). Then, the lowest component of the equation of motion for V leads to the constraint

below. Note, in particular, that due to the absence of eV terms in the off-diagonal terms, the βi do not

enter in the constraint; they do however determine the geometric structure on M.
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these models is always noncompact, for any choice of gauge charges. The generalization

of this discussion to generic gauge groups G is straightforward,10 at the classical level (the

analysis of quantum effects would require a careful treatment, as in [50]).

It is well known that the moduli spaces (2.18) admit not only a Kähler, but in fact

a Calabi-Yau structure (the condition
∑

aQa = 0 is automatically satisfied). It would be

interesting to study whether they also admit a generalized Calabi-Yau structure [45]. This

could answer the question of the behavior of the theories in the deep IR, which we do not

address here.

Before we proceed we would like to make a comment on couplings to other vector

multiplets. Since semichiral fields are less constrained than chiral or twisted chiral fields,

they admit minimal couplings to various vector multiplets. In addition to the usual vector

multiplet, they may couple minimally to the twisted vector multiplet, as well as to the

Semichiral Vector Multiplet (SVM) and the Large Vector Multiplet (LVM) introduced

in [29, 51]. The corresponding GLSMs and the structure of their moduli space is discussed

in [27]. We do not study these models here, but we comment briefly on the coupling to the

Abelian SVM in section 4.3.

3 Semichiral fields on S2

The main goal of this section is to place the gauge theories (2.11) — or equivalently (2.15) —

on the round sphere S2 with no twist, i.e., on the supersymmetric background constructed

in [4, 5] which preserves four supercharges. Neutral semichiral multiplets, as well as general

supersymmetry in two dimensions, have been studied in [52]. We explicitly construct the

supersymmetry variations for gauged semichiral multiplets and their action on S2. As we

now show, it turns out that the action is QA-exact, therefore the partition function will

not depend on the parameters α (or β) therein. We work in components, rather than in

superspace.

3.1 Supersymmetry transformations

One way to determine the supersymmetry transformations on S2 is by first constructing the

N = (2, 2) superconformal transformations and then specializing to an SU(2|1) sub-algebra.
The superconformal transformations can be deduced from the N = (2, 2) super-Poincaré

transformations (2.8) by covariantizing them with respect to Weyl transformations, as we

now review.

Let the scalar component X transform under Weyl transformations with a weight q
2 ,

i.e., under an infinitesimal Weyl transformation δX = − q
2ΩX. The supersymmetry trans-

formations (2.8) are not covariant under Weyl transformations, but can be covariantized

by adding suitable terms proportional to ∇±ǫ, as explained in [5] and reviewed in ap-

pendix A.5. Following this procedure, we find that the Weyl-covariant transformations for

10This is certainly the case when there are also charged chiral fields in the model. If only semichiral fields

are present, the generalization to the nonabelian case may be more subtle [27].
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the superfields X and X̄ are:

δψα =

([
i(DµX)γµ + iσ1X + σ2Xγ3 + i

q

2
X /∇

]
ǫ

)

α

− ǫβMβα + ǭαF δX = ǭψ + ǫχ̄

δF =
[
−iσ1ψ − σ2ψγ3 − iλX − i(Dµψ)γ

µ − i
q

2
ψ /∇+ η̄

]
ǫ δχ̄α = ǭβMαβ

δMαβ = −η̄αǭβ − iσ1χ̄αǫβ − σ2χ̄α(γ3ǫ)β − i(Dµχ̄α)(γ
µǫ)β

− i
q + 1

2
χ̄α( /∇ǫ)β +

i

2
(γ3 /∇ǫ)β(γ3χ̄)α

δη̄α = −i(ǫλ)χ̄α + i(ǫγµ)βDµMαβ − iσ1ǫ
βMαβ − σ2(γ3ǫ)

βMαβ

+ i
q + 1

2
((∇µǫ)γ

µ)β Mαβ +
i

2
(∇µǫγ3γ

µ)β(γ3)α
ρMρβ ,

and

δψ̄α =

([
i(DµX̄)γµ − iσ1X̄ + σ2X̄γ3 + i

q

2
X̄ /∇

]
ǭ

)

α

− ǭβM̄βα + ǫαF̄ δX̄ = ǫψ̄ + ǭχ

δF̄ =
[
iσ1ψ̄ − σ2ψ̄γ3 − iλ̄X̄ − i(Dµψ̄)γ

µ − i
q

2
ψ̄ /∇+ η

]
ǭ δχα = ǫβM̄αβ

δM̄αβ = −ηαǫβ + iσ1χαǭβ − σ2χα(γ3ǭ)β − i(Dµχα)(γ
µǭ)β

− i
q + 1

2
χα( /∇ǭ)β +

i

2
(γ3 /∇ǭ)β(γ3χ)α

δηα = −i(ǭλ̄)χα + i(ǭγµ)βDµM̄αβ + iσ1ǭ
βM̄αβ − σ2(γ3ǭ)

βM̄αβ

+ i
q + 1

2
((∇µǭ)γ

µ)β M̄αβ +
i

2
(∇µǭγ3γ

µ)β(γ3)α
ρM̄ρβ .

(3.1)

Here Dµ = ∇µ − iAµ is the gauge-covariant derivative on S2. Splitting δ = δǫ + δǭ and

imposing the Killing spinor equations ∇µǫ = γµǫ̌, ∇µǭ = γµˇ̄ǫ for some spinors ǫ̌, ˇ̄ǫ, one

finds that the superconformal algebra is realized on semichiral fields as:

[δǫ, δǭ]X = ξµ∂µX + iΛX +
q

2
ρX + iqαX ,

[δǫ, δǭ]X̄ = ξµ∂µX̄ − iΛX̄ +
q

2
ρX̄ − iqαX̄ ,

[δǫ, δǭ]ψ = ξµ∂µψ + iΛψ +
q + 1

2
ρψ + i(q − 1)αψ +

1

4
Θµνγµνψ + iβγ3ψ ,

[δǫ, δǭ]ψ̄ = ξµ∂µψ̄ − iΛψ̄ +
q + 1

2
ρψ̄ − i(q − 1)αψ̄ +

1

4
Θµνγµνψ̄ − iβγ3ψ̄ ,

[δǫ, δǭ]F = ξµ∂µF + iΛF +
q + 2

2
ρF + i(q − 2)αF ,

[δǫ, δǭ]F̄ = ξµ∂µF̄ − iΛF̄ +
q + 2

2
ρF̄ − i(q − 2)αF̄ ,

[δǫ, δǭ]χ̄α = ξµ∂µχ̄α + iΛχ̄α +
q + 1

2
ρχ̄α + i(q + 1)αχ̄α +

1

4
Θµνγµν χ̄α − iβ(γ3χ̄)α ,

[δǫ, δǭ]χα = ξµ∂µχα − iΛχα +
q + 1

2
ρχα − i(q + 1)αχα +

1

4
Θµνγµνχα + iβ(γ3χ)α ,

[δǫ, δǭ]Mαβ = ξµ∂µMαβ + iΛMαβ +
q + 2

2
ρMαβ + iqαMαβ +

1

4
Θµν(γµν)α

ρMρβ

+
1

4
Θµν(γµν)β

ρMαρ − iβ(γ3)α
ρMρβ + iβ(γ3)β

ρMαρ ,
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[δǫ, δǭ]M̄αβ = ξµ∂µM̄αβ − iΛM̄αβ +
q + 2

2
ρM̄αβ − iqαM̄αβ +

1

4
Θµν(γµν)α

ρM̄ρβ

+
1

4
Θµν(γµν)β

ρM̄αρ + iβ(γ3)α
ρM̄ρβ − iβ(γ3)β

ρM̄αρ ,

[δǫ, δǭ]η̄α = ξµ∂µη̄α + iΛη̄α +
q + 3

2
ρη̄α + i(q − 1)αη̄α +

1

4
Θµνγµν η̄α − iβ(γ3η̄)α ,

[δǫ, δǭ]ηα = ξµ∂µηα − iΛηα +
q + 3

2
ρηα − i(q − 1)αηα +

1

4
Θµνγµνηα + iβ(γ3η)α , (3.2)

where the parameters are given by

ξµ ≡ i(ǭγµǫ) ,

Θµν ≡D[µξν] + ξρωρ
µν ,

α ≡ − 1

4
(Dµǭγ

µǫ− ǭγµDµǫ) ,

Λ ≡ − ξµAµ + (ǭǫ)σ1 − i(ǭγ3ǫ)σ2 ,

ρ ≡ i

2
(Dµǭγ

µǫ+ ǭγµDµǫ) =
1

2
Dµξ

µ ,

β ≡ 1

4
(Dµǭγ3γ

µǫ− ǭγ3γ
µDµǫ) ,

and ωρ
µν is the spin connection. Here ξµ parametrizes translations, Λ is a gauge parameter,

ρ is a parameter for dilations, and α, β parametrize vector and axial R-symmetry transfor-

mations, respectively. From here one reads off the charges of the fields under these transfor-

mations, which are summarized in table 1. Note that the vector R-charge of the multiplet is

twice its Weyl weight, as for chiral fields. All other commutators vanish, [δǫ, δǫ] = [δǭ, δǭ] =

0, if one imposes the extra condition �ǫ = hǫ, �ǭ = hǭ with the same function h.

D+ D− D̄+ D̄− X ψ χ̄ F Mαβ η̄

w 1
2

1
2

1
2

1
2

q
2

q+1
2

q+1
2

q+2
2

q+2
2

q+3
2

qV −1 −1 1 1 q q − 1 q + 1 q − 2 q q − 1

qA 1 −1 −1 1 0 1 −1 0 −2ǫαβ −1

Table 1. Weyl weight, vector and axial R-charge for the component fields of the semichiral

multiplet.

There are four complex Killing spinors on S2 satisfying ∇µǫ = ± i
2rγµǫ. Restricting

the transformations (3.1) to spinors ǫ, ǭ that satisfy

∇µǫ =
i

2r
γµǫ , ∇µǭ =

i

2r
γµǭ , (3.3)

the algebra (3.2) does not contain dilations nor axial R-rotations (i.e. ρ = β = 0). This

is an SU(2|1) subalgebra of the superconformal algebra that we identify as the N = (2, 2)

SUSY on S2 and denote it by SU(2|1)A, as in [4, 5]. The transformation rules in (3.1)
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simplify to

δψα = ǫβ(PβαX −Mβα) + ǭαF − q

2r
Xǫα δX = ǭψ + ǫχ̄

δF = ǫαPαβψ
β − i(ǫλ)X + ǫη̄ +

q

2r
ǫψ δχ̄α = Mαβ ǭ

β

δMαβ = ǫγPγβχ̄α − η̄αǭβ +
q − 2

2r
χ̄αǫβ +

2

r
χ̄(αǫβ)

δη̄α = ǫκPκγMαβC
γβ − i(ǫλ)χ̄α +

q

2r
Mαβǫ

β +
2

r
M[αβ]ǫ

β ,

and

δψ̄α = ǭβ(PαβX̄ − M̄βα) + ǫαF̄ − q

2r
X̄ǭα δX̄ = ǫψ̄ + ǭχ

δF̄ = ǭαPβαψ̄
β − i(ǭλ̄)X̄ + ǭη +

q

2r
ǭψ̄ δχα = M̄αβǫ

β

δM̄αβ = ǭγPβγχα − ηαǫβ +
q − 2

2r
χαǭβ +

2

r
χ(αǭβ)

δηα = ǭκPγκM̄αβC
γβ − i(ǭλ̄)χα +

q

2r
M̄αβ ǭ

β +
2

r
M̄[αβ]ǭ

β ,

(3.4)

where Cαβ is the antisymmetric tensor with C+− = 1 and [αβ] , (αβ) denotes (anti-)

symmetrization of indices, respectively.11 Another way to derive these transformation

rules is by coupling the theory to background supergravity, along the lines of [53]. Using

this method, the SUSY transformations (in the case of neutral fields) on more general

Riemann surfaces are given in [52].

3.2 Supersymmetric actions

The flat-space action (2.10) is not invariant under the curved-space transformations (3.4).

However, it is possible to add suitable 1
r
and 1

r2
terms to obtain an invariant Lagrangian:

LS2

X = LR2

X + δL ,

δL =
iq

r
X̄σ1X +

q(2− q)

4r2
X̄X − q

2r

(
ψ̄ψ + χχ̄+ X̄CαβMαβ + CαβM̄αβX

)
.

(3.5)

The first three terms in δL are the ones also needed in the case of a chiral field, while the

last three terms are additional ones required for semichiral fields. The action is not only

supersymmetric, it is also QA-exact, namely:

ǭǫ

∫
d2xLS2

X =δǫδǭ

∫
d2x

(
ψ̄ψ + χχ̄− 2iX̄σ1X +

q − 1

r
X̄X + X̄CαβMαβ + CαβM̄αβX

)
.

(3.6)

Thus, one can use LS2

X itself for localization, which is an important simplification in eval-

uating the one-loop determinant using spherical harmonics.12

11Here we have written the transformations using explicit representations for the gamma matrices and

properties of spinors (see appendix A.1). We find this convenient for calculations in the upcoming sections.
12Strictly speaking, one should use a QA-exact action which is positive definite, so that one localizes to

the zero-locus. LS2

X has positive definite real part, provided that 0 ≤ q ≤ 2.
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Same representation. Let us consider first the case of a pair of semichiral fields in

representation (R,R) with the flat-space action (2.11). Since so far we treated X̄ and X as

independent fields, we can use the result (3.5) for each individual term in (2.11) and the

Lagrangian on S2 is therefore given by

LS2

LR = DµX̄
iDµXi + X̄i

(
σ2
1 + σ2

2 + iD
)
Xi + F̄ iFi

− M̄ i
αβM

βα
i − X̄iPαβM

αβ
i + M̄αβ,iPβαXi

− iψ̄iγµDµψi + ψ̄i (iσ1 − γ3σ2)ψi + iψ̄iλXi − iX̄iλ̄ψi − ηiψi − ψ̄iη̄i

+ iχ̄iγ
µDµχ

i − χ̄i (iσ1 − γ3σ2)χ
i + iX̄iλχ̄i − iχiλ̄Xi

+
iq

r
X̄iσ1Xi +

q(2− q)

4r2
X̄iXi −

q

2r

(
ψ̄iψi + χiχ̄i + X̄iCαβMi αβ + CαβM̄ i

αβXi

)
,

(3.7)

where the flavor indices i = (L,R) are contracted with

Mı̄j = −
(
1 α

α 1

)
. (3.8)

The action (3.7) is QA-exact, being a sum of QA-exact terms.

In the simple model with a single pair of semichiral fields and gauge group U(1), the

R-charge q is unphysical, because it can be set to the canonical value q = 0 by mixing

the R-current with the gauge current
(
this is no longer true if we have multiple semichiral

pairs charged under the same U(1)
)
. However, we keep q for now and set it to zero only at

the end of the calculation; this will reduce the number of BPS configurations to be taken

into account in the localization.

Conjugate representations. Let us move to the case of a pair of semichiral fields in

conjugate representations, whose flat-space Lagrangian includes off-diagonal terms of the

form XLXR appearing in (2.15):

LR2

β = β

∫
d4θ

(
XLXR + X̄LX̄R

)
= β

(
MαβMαβ − η̄χ̄+ M̄αβM̄αβ − ηχ

)
. (3.9)

This Lagrangian is actually invariant under the S2 SUSY transformations (3.4), with no

need for 1
r
improving terms, i.e., LS2

β = LR2

β . Furthermore, it is also QA-exact, namely:

ǭǫ

∫
d2xLS2

β = δǫδǭ

∫
d2x

(
XLM+− −XRM−+ + χ̄−ψ

R
+ + ψL

−χ̄+ − 1

r
XRXL

+ X̄LM̄+− − X̄RM̄−+ + χ−ψ̄
R
+ + ψ̄L

−χ+ − 1

r
X̄LX̄R

)
. (3.10)

Note that although 1
r
terms appear inside the integral on the right-hand side, these are

cancelled against 1
r
terms coming from δǫδǭ. Summarizing, the generalization of (2.15) to S2

is the sum of (3.7) (where flavor indices are contracted instead with Mı̄j = δı̄j) and (3.9).

Since a general Lagrangian for a number NF of semichiral pairs can always be rewritten

as NF decouped copies of a single pair, the elements given above are sufficient to write the

general action on S2 for any number of semichiral multiplets.
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4 Localization on the Coulomb branch

In this section, we compute the S2 partition function of the gauge theories at hand by

means of localization on the Coulomb-branch localization.

We wish to compute the path integral

ZS2 =

∫
Dϕe−S[ϕ] ,

where ϕ are all fields in the theory, namely those in vector multiplets, semichiral multiplets,

and possibly chiral multiplets. The action is given by

S =

∫
d2x

(
LVM + LFI + Lchiral + Lsemichiral

)
, (4.1)

where each term is the appropriate Lagrangian on S2 and LFI = −iξD + iθ
2πF12 is the

standard FI term (which needs no curvature couplings on S2). To perform the localization,

we pick a Killing spinor ǫ (our choice is in (A.28), but all choices are equivalent up to

rotations of S2) and call QA the generator of supersymmetry variations along ǫ and ǭ = ǫc,

as in [4]. The supercharge QA generates an SU(1|1) superalgebra, that we will use for

localization. Following the usual arguments [2, 3], the partition function localizes on the

BPS configurations given by {QA · fermions = 0}, and it is given exactly by the one-loop

determinant around such configurations. The contribution from vector and chiral multiplets

was studied in [4, 5], that from twisted chiral multiplets in [6], and that from twisted vector

multiplets in [13]. Here we study the contribution from semichiral multiplets.

We begin by studying the BPS equations. These follow from setting the variations of

all fermions in (3.4) to zero and are analyzed in detail in appendix A.6. We show that for

a generic value of q 6= 0, the only smooth solution is

X = X̄ = F = F̄ = Mαβ = M̄αβ = 0 . (4.2)

Thus, like in the case of chiral multiplets, the BPS configuration for generic q is only the

trivial one. The BPS configurations for the vector multiplet are given by [4, 5]

0 = F12 −
σ2
r

= D +
σ1
r

= Dµσ1 = Dµσ2 = [σ1, σ2] . (4.3)

Flux quantization of F12 implies that, up to gauge transformations, σ2 = m

2r where m

is a co-weight (i.e. m belongs to the Cartan subalgebra of the gauge group algebra and

ρ(m) ∈ Z for any weight ρ of any representation R). Thus, the set of BPS configurations

are parametrized by the continuous variable σ1 and the discrete fluxes m.

As shown in the previous section, the kinetic actions for semichiral fields are QA-exact.

Thus, we can use the kinetic actions themselves as a deformation term for localization

and we should compute the one-loop determinants arising from those actions. We now

compute the determinant for semichiral fields in the same gauge representation, as well as

in conjugate representations; the determinants coincide, as they should, since such theories

are related by a simple change of variables.
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4.1 One-loop determinants

Same representation. Consider the Lagrangian (3.7) and expand it at quadratic order

around the BPS background. Let us look at bosonic fields first, using the basis

X =
(
XL, XR,ML

−+,M
L
−−,M

R
++,M

R
+−, F

L, FR
)T

.

The bosonic part of the quadratic action is given by X̄OBX , where OB is the 8×8 operator

OB =




OX αOX
q
2r − σ 2iD++ −α 2iD−− −α

(
q
2r + σ̄

)
0 0

αOX OX α
(

q
2r − σ

)
α 2iD++ −2iD−− −

(
q
2r + σ̄

)
0 0

α
(
σ − q

2r

)
− q

2r + σ 0 0 0 −1 0 0

α 2iD−− 2iD−− 0 α 0 0 0 0

−2iD++ −α 2iD++ 0 0 α 0 0 0
q
2r + σ̄ α

(
q
2r + σ̄

)
−1 0 0 0 0 0

0 0 0 0 0 0 1 α

0 0 0 0 0 0 α 1




(4.4)

and

OX = −�+ σ2
1 + σ2

2 + i
(q − 1)σ1

r
+

q(2− q)

4r2
. (4.5)

All appearances of σ1, σ2 in this matrix (and all matrices below) are to be understood as

ρ(σ1), ρ(σ2), but we omit this to avoid cluttering the matrices; we will reinstate them in the

expressions for the determinants below. The analysis of the eigenvalues of (4.4) contains

different cases, depending on the angular momentum j on S2. Assuming α 6= 0, and putting

all cases together, the determinant in the bosonic sector is given by (see appendix C):

DetOB =
∏

ρ∈R

α|ρ(m)|−1

α|ρ(m)|+1

∞∏

j=
|ρ(m)|

2

[
j2 +

(α2 − 1)ρ(m)2

4
− α2

(
q

2
− irρ(σ1)

)2]2j+1

×

×
[
(j + 1)2 +

(α2 − 1)ρ(m)2

4
− α2

(
q

2
− irρ(σ1)

)2]2j+1((α2 − 1)2

r4

)2j+1

. (4.6)

Now we turn to the fermionic determinant. In the basis

Ψ =
(
ψL+, ψL−, ψR+, ψR−, η̄L+, η̄R−, χ̄L+, χ̄R−

)T

,
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the quadratic action for fermions is Ψ̄OFΨ where OF reads




−
(

q
2r + σ̄

)
2iD−− −α

(
q
2r + σ̄

)
2iαD−− −1 0 0 0

−2iD++
q
2r − σ −2iαD++ α

(
q
2r − σ

)
0 α 0 0

−α
(

q
2r + σ̄

)
2iαD−− −

(
q
2r + σ̄

)
2iD−− −α 0 0 0

−2iαD++ α
(

q
2r − σ

)
−2iD++

q
2r − σ 0 1 0 0

−α 0 −1 0 0 0 0 0

0 1 0 α 0 0 0 0

0 0 0 0 0 0 −α
(

q
2r − σ

)
−2iD−−

0 0 0 0 0 0 2iD++ α
(

q
2r + σ̄

)




.

An analysis of the eigenvalues of this operator gives the determinant

DetOF =
∏

ρ∈R

(
(1− α2)α2

r2

)|ρ(m)|[ρ(m)2

4
−
(
q

2
− irρ(σ1)

)2]|ρ(m)|

×

×
∞∏

j=
|ρ(m)|+1

2

(
α2 − 1

r2

)4j+2[(
j +

1

2

)2

+
(α2 − 1)ρ(m)2

4
− α2

(
q

2
− irρ(σ1)

)2]4j+2

. (4.7)

Bringing the bosonic and fermionic determinants together leads to many cancellations and

the final result is

ZLR =
DetOF

DetOB
=

∏

ρ∈R

(−1)|ρ(m)|

ρ(m)2

4 −
(
q
2 − irρ(σ1)

)2 . (4.8)

Note that in this expression, the dependence on the parameter α has cancelled, as expected

from the fact that this parameter appears in a QA-exact term.13

This expression has simple poles at ρ(σ1) = − i
2r (q ± ρ(m)) for ρ(m) 6= 0, and a double

pole at ρ(σ1) = − iq
2r for ρ(m) = 0. Using properties of the Γ-function, (4.8) can be written as

ZLR =
∏

ρ∈R

Γ
(
q
2 − irρ(σ1)− ρ(m)

2

)

Γ
(
1− q

2 + irρ(σ1)− ρ(m)
2

) ·
Γ
(
− q

2 + irρ(σ1) +
ρ(m)
2

)

Γ
(
1 + q

2 − irρ(σ1) +
ρ(m)
2

) . (4.9)

The radius r can be reabsorbed into σ1, making it into a dimensionless variable. In

fact (4.9) coincides with the one-loop determinant for two chiral fields in conjugate

representations of the gauge group, opposite R-charges, and no twisted mass parameter

turned on. Each Γ-function in the numerator has an infinite tower of poles, most of which

cancel against the poles of the denominator (such a cancellation does not occur for a pair

of chiral multiplets with generic twisted masses and R-charges).

13In fact, here we have dropped overall factors of r2 and (α2 − 1), which can be reabsorbed in the

path-integral measure.
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Conjugate representations. Here we compute the one-loop determinant for semichiral

fields in representation (R,R). The flat-space Lagrangian is the semichiral dual to the one

in the previous section (see appendix B.2). To place it on S2 we take (3.7), where the

indices are contracted appropriately, and the off-diagonal term (3.9). To second order in

the fluctuations, the bosonic action is X̄ ÕBX where

X =
(
XL, X̄R,ML

−+,M
L
−−, M̄

R
++, M̄

R
+−, F

L, F̄R
)T

and

ÕB =




αsO(q)
X 0 αs

(
q
2r − σ

)
αs2iD++ 0 0 0 0

0 O(−q)
X 0 0 −2iD−−

q
2r − σ 0 0

0 q
2r + σ̄ −α 0 0 −1 0 0

0 2iD−− 0 α 0 0 0 0

−αs2iD++ 0 0 0 α 0 0 0

αs

(
q
2r + σ̄

)
0 −αs 0 0 −α 0 0

0 0 0 0 0 0 αs 0

0 0 0 0 0 0 0 1




.

in which we defined αs = α2 − 1 and O(q)
X is the operator in (4.5) using R-charge q. The

second-order fermionic action is Ψ̄ÕFΨ with

Ψ =
(
ψL+, ψL−, ψ̄R+, ψ̄R−, η̄L+, ηR−, χ̄L+, χR−

)T

and ÕF equals



−αs

(
q
2r + σ̄

)
αs2iD−− 0 0 −αs 0 0 0

−αs2iD++ αs

(
q
2r − σ

)
0 0 0 0 0 0

0 0 q
2r − σ 2iD−− 0 0 0 0

0 0 −2iD++ −
(

q
2r + σ̄

)
0 −1 0 0

0 0 1 0 0 0 α 0

0 αs 0 0 0 0 0 −α

0 0 0 0 α 0 0 −2iD−−

0 0 0 0 0 −α αs2iD++ 0




.

Evaluating the determinants, we again find (4.9), as expected.

4.2 Integration contour and instanton corrections

The full partition function requires integration over the zero-mode σ1, as well as summation

over the flux sectors m (which are co-weights of the gauge group):

ZS2

LR =
1

|W|
∑

m

∫
dσ1
2π

e−4πiξTrσ1−iθTrm Zgauge ZLR , (4.10)
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where ZLR is given in (4.9), |W| is the order of the Weyl group, and Zgauge is the contri-

bution from the vector multiplet given in [4, 5]. The integral is over some contour in the

complex plane which needs to be specified, as we are going to discuss.

Let us make our point through a concrete example. Consider NF pairs of semichiral

fields coupled to a U(1) gauge field, each pair having charges (1,−1) and R-charges (q,−q).

From now on we set the radius r = 1 to avoid cluttering the formulæ. We can simply take

the result (4.9) for each pair and obtain

ZS2

LR(ξ, θ) =
∑

m

∫
dσ1
2π

e−4πiξσ1−iθm

(
Γ
(
q
2 − iσ1 − m

2

)

Γ
(
1− q

2 + iσ1 − m

2

) · Γ
(
− q

2 + iσ1 +
m

2

)

Γ
(
1 + q

2 − iσ1 +
m

2

)
)NF

.

We have not included any twisted mass. As we have discussed, the integrand coincides with

that of NF chiral fields of charge 1 and NF chiral fields of charge −1. It has poles of order

NF at σ1 = − i
2(q ±m) for m 6= 0, and a pole of order 2NF at σ1 = − i

2q for m = 0. If the

R-charge is set to q = 0, in the m = 0 sector one encounters a pole on the real line. Unless

this pole is avoided by the integration contour, it leads to a divergence; such a divergence is

physical, as it is a manifestation of the non-compactness of the target space. To avoid the di-

vergence and extract some useful information, the contour prescription should be modified.

The way this is dealt with in the case of chiral fields is to introduce twisted masses. For

instance, in the case NF = 1 of two chiral fields Φ, Φ̃ there is a U(1)g ×U(1)F symmetry:

the first U(1)g is gauged, while the second remains as a global flavor symmetry. One can

turn on a twisted mass M̃ associated to U(1)F which splits the double pole for m = 0 into

two poles, one above the real axis and one below it. Integrating along the real line (i.e.,

going through the split poles for m = 0) leads to a finite result, regulated by M̃ . From the

point of view of the low-energy NLSM, a twisted mass corresponds to a quadratic potential

on the target which effectively compactifies the model.

Unfortunately, in the semichiral case this resolution is not possible. As we have dis-

cussed, the only U(1) symmetry in these models is the one being gauged14 — the would-be

flavour symmetry U(1)F is broken by the off-diagonal terms in (2.11) or (2.15). Thus, we

are forced to choose a different contour prescription to avoid the singularity. One possible

choice is to simply go around the double pole for m = 0, either above or below it, avoiding

the classical (divergent) contribution; this is the contour prescription we choose.

From the point of view of the large-volume NLSM, at least in the Abelian case, the

prescription can be interpreted as follows. Going back to the model with chiral fields,

suppose that ξ < 0 which selects a particular large-volume limit. One can rewrite the

integral along the real line as a sum of the residues at the poles in the upper half-plane.

Each residue can be interpreted as the contribution from a different instanton sector to the

NLSM path-integral [22, 23, 54], and in particular the residue at the pole collapsing with

its partner (as M̃ → 0) reproduces the classical and one-loop contribution, divergent in

the limit. We choose, instead, a contour that goes above the collapsing pair of poles: this

essentially misses the collapsing pole, and therefore it computes the NLSM path-integral

14As discussed in [27], there is a way to introduce additional mass parameters in these theories using the

SVM. This is achieved by giving the chiral field strength (of R-charge 2) in the SVM a VEV, but since this

field has a non-zero R-charge, this breaks A-type supersymmetry on the sphere.
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without the zero-instanton contribution. This makes sense because the space of NLSM field

configurations is the disconnected sum of instanton sectors, therefore it is a well-defined

operation to remove one of them from the path-integral. Had we considered the large-

volume limit at ξ > 0, we would have taken the contour that goes below the collapsing pair

of poles. Notice that the instanton corrections captured by this prescription are identical

to the ones in the corresponding Kähler case.

Performing the contour integral in the simple Abelian model above, with ξ < 0, using

Cauchy’s integral formula and summing over m, one finds

Z inst
NF

(ξ, θ) =

NF−1∑

j=0

(2NF − 2− j)!

(NF − 1)!2

(
NF − 1

j

)
(−4πξ)j ×

×
[
Li2NF−1−j

(
(−1)NF eiθ+2πξ

)
+ Li2NF−1−j

(
(−1)NF e−iθ+2πξ

)]
, (4.11)

where we have set q = 0 after performing the integral.

A case of particular interest is NF = 2
(
or NF = 1, and in addition two chiral fields

with gauge charges (1,−1)
)
, for which the target space has complex dimension three. As

we discuss in section 5.2, this gauge theory describes a conifold with a generalized Kähler

structure. The contribution due to instantons reads

Z inst
conifold(ξ, θ) = 2

(
Li3(e

2πξ+iθ) + Li3(e
2πξ−iθ)

)
− 4πξ

(
Li2(e

2πξ+iθ) + Li2(e
2πξ−iθ)

)
.

(4.12)

We discuss instanton corrections from the point of view of the NLSM in section 5, but

before that we make a comment on gauge theories with other vector multiplets.

4.3 Coupling to other vector multiplets

As mentioned earlier, a salient feature of semichiral fields is that they can couple minimally

to various vector multiplets. So far we have studied the coupling to the usual vector

multiplet, but they may also couple to the twisted vector and to the SVM. For the SVM

one can define two gauge-invariant field strengths (F, F̃), which are chiral and twisted chiral,

respectively (see appendix A.3 for a brief overview). In the Abelian case, a gauge-invariant

action in flat space is:

LSVM, LR = − 1

2e2

∫
d4θ

(
¯̃
FF̃− F̄F

)
+

(
i

∫
d2θ sF+ c.c.

)
+

(
i

∫
d2θ̃ t F̃+ c.c.

)

+

NF∑

i=1

∫
d4θ

[
X̄i
Le

QiVLXi
L + X̄i

Re
QiVRXi

R + βi
(
Xi
Le

−iQiVXi
R + c.c.

)]
. (4.13)

The first line is the kinetic action for the SVM and s, t are two complex FI parameters. The

Higgs branch has complex dimension 2NF −2 and for generic value of the parameters βi the

geometry is generalized Kähler [27]. For a special choice of the parameters the geometry

becomes hyperkähler [32].

Now, we can promote s in (4.13) to a chiral field Φ:

s → Φ .

– 20 –



J
H
E
P
0
1
(
2
0
1
6
)
0
6
0

As discussed in [27], by doing so Φ acts as a Lagrange multiplier imposing F = 0 and

by choosing an appropriate SVM gauge, the action reduces to (2.16), namely the action

of semichiral fields coupled to the usual vector multiplet. From the superspace point of

view, this is a more natural way to formulate the gauge theories (2.16). For our purposes

here, however, it is simpler to derive the couplings to curvature when working in the

formulation (2.16). Note that the theory in (4.13) and the one with dynamical Φ only

differ by a superpotential term, moreover the Lagrange multiplier must be neutral and

with R-charge 0. It follows that the partition functions in QA-localization for the two

Abelian theories coincide.

5 Sigma models on generalized Kähler manifolds

The GLSMs discussed in this paper realize NLSMs on generalized Kähler manifolds. In

this section we discuss instanton corrections from the point of view of the NLSM on the

generalized Kähler space, and comment on possible interpretations for the GLSM partition

function. We first review some known results on topologically twisted sigma models with

Kähler and generalized Kähler target spaces, and then discuss some interesting issues that

the localization computation raises for the models at hand.

5.1 Topologically twisted theories

The topological twist is a powerful method to obtain exact results about specific sectors

in supersymmetric theories [2]. After a topological twist, a linear combination of the

supercharges becomes a scalar charge QBRST, referred to as the BRST operator. In the

case of nonlinear sigma models with a Kähler target space, the classical action of the NLSM

can be written as the sum of a BRST-exact term and a topological term [3]. The path-

integral localizes on fixed points of QBRST and therefore the partition function is given by

a sum over such configurations, with a weight given by the exponential of the topological

term. In the A-model, the fixed points of QBRST are holomorphic maps, while in the

B-model they are constant maps.

The topologically twisted versions of sigma models with a generalized Kähler target

space were first studied in [44] (see [55–57] for further discussions). A BRST operator can

be constructed and its fixed points are given (in the case of an A-twist) by configurations

satisfying
1

2

(
1− iJ+

)
∂̄X = 0 ,

1

2

(
1 + iJ−

)
∂X = 0 , (5.1)

where X are real coordinates on the target space and target space indices have been

omitted. These equations are a generalization of both the usual holomorphic maps of the

ordinary A-model and the constant maps of the ordinary B-model.

As in the Kähler case, it is natural to expect that the classical action can be written as

a sum of a BRST-exact term and a topological term. This was proven when [J+, J−] = 0,

and conjectured to also hold when [J+, J−] 6= 0 [58].

Here we wish to focus on the space of solutions to (5.1). As discussed in [44], for

generic J±, and at a generic point on the manifold, these equations are more restrictive
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than the ordinary holomorphic map condition: in fact the only solutions are constant

maps and non-trivial instanton solutions are not possible. However, if J+ = J− then the

two equations in (5.1) become complex conjugates to each other and they reduce to the

standard holomorphic map condition, allowing for non-trivial instanton solutions. Thus,

instanton corrections can only arise from (compact) submanifolds on which the pull-back

of ω ≡ g(J+ − J−) is degenerate.
15

We now discuss in more detail the generalized Kähler structure realized by the GLSMs

discussed in a particular example.

5.2 Example: a generalized Kähler metric on the conifold

Consider a pair of semichiral fields and a pair of chiral fields (XL,XR,Φ1,Φ2), charged under

a U(1) vector multiplet with charges (1,−1, 1,−1), respectively.16 The kinetic Lagrangian

is given by

L = LVM+

∫
d4θ

(
X̄LXL+ X̄RXR+β

(
XLXR+ X̄LX̄R

)
+Φ̄1Φ1+Φ̄2Φ2

)
+

i

2

∫
d2θ̃ tΣ+c.c. ,

(5.2)

where LVM is given in (2.17), t = iξ + θ
2π and we take ξ > 0. As discussed in section 2.4

(and including the usual contribution from chiral fields), the space of vacua of this theory

is given by solutions to

|XL|2 + |φ1|2 − |XR|2 − |φ2|2 = ξ , (5.3)

modulo U(1) gauge transformations. As a quotient space, this is the description of the

resolved conifold, a C2 bundle over CP1 [59]. For ξ = 0 the space has a conical singularity

at the origin (the tip of the cone), but for finite ξ the singularity is blown-up to an S2 of

radius |ξ| 12 . For ξ > 0, the S2 at the tip is given by setting XR = φ2 = 0. Gauge-invariant

combinations are

X′
L =

XL

Φ1
, X′

R = Φ1XR , Φ = Φ1Φ2 . (5.4)

These are good coordinates on the target in the patch Φ1 6= 0.

It is well known that this space admits a Kähler metric (in fact, a Calabi-Yau metric)

and can be realized by a GLSM with four chiral fields with charges (1, 1,−1,−1) [60]. In

the description (5.2) this corresponds to the limit β → ∞.

The genus-zero partition function of the topological string on the conifold was com-

puted in [61].17 In addition to the classical contribution it contains nontrivial instanton

corrections, which arise from multi-coverings of the worldsheet onto the S2 at the tip. In

supersymmetric localization these are captured by (4.12).

15Similarly, in the case of a B-twist instanton corrections arise only from compact submanifolds on which

g(J+ + J−) is degenerate.
16One may consider a GLSM involving semichiral fields only. This model is discussed in more detail

in [27] but requires the introduction of a new vector multiplet and calculations are less straightforward.

Nonetheless, the discussion below also applies to those models.
17For a review of the results for higher genus contributions and the interesting relation to 3d Chern-Simons

theory, see [62, 63] and references therein.

– 22 –



J
H
E
P
0
1
(
2
0
1
6
)
0
6
0

As mentioned in the introduction, the full geometric data is encoded in the NLSM’s

N = (2, 2) superspace Lagrangian K — the generalized Kähler potential. This function

can be easily computed in the UV by classically integrating out the vector multiplet V .

In the limit e → ∞, the equation of motion for the vector multiplet is simply a quadratic

equation for eV . Solving it and plugging eV back into the action (5.2), one obtains the

generalized Kähler potential

KUV =
√
ξ2 + 4 r2 − ξ log

(
ξ +

√
ξ2 + 4 r2

1 + |XL|2
)
+ β

(
XLXR + X̄LX̄R

)
, (5.5)

where we have written the potential in terms of the gauge-invariant coordinates (5.4) (and

dropped the primes) and defined the radial coordinate r2 ≡
(
1 + |XL|2

)(
|XR|2 + |Φ|2

)
.

Both square roots in (5.5) should be taken as the positive root, since we have chosen a

particular branch of the solution corresponding to a real eV . The subscript UV reminds

us that, although this is a description of the gauge theory at low energies with respect to

the gauge coupling e, it is still at high energies from the point of view of the NLSM: such

a NLSM is not conformal and will continue to flow towards the IR.

Using the formulæ in appendix D.1, one can compute the metric gUV and the NS-NS

three-form fieldHUV from the generalized potential (5.5). Since we do not expect gUV, HUV

to solve the supergravity equations,18 we are not particularly interested in their explicit

expression, apart from the fact that for finite β one finds HUV 6= 0 and J+ 6= J− and

therefore the target in the UV is generalized Kähler. In the special limit β → ∞, the

H-field vanishes and one recovers the Kähler case, as expected. The full expression for

HUV is rather lengthy, but can be computed explicitly.

We now wish to address the issue of instanton corrections. Since these are independent

of the RG scale, one may compute them in the UV NLSM, without knowledge of the IR

metric and flux. In the Kähler case these arise from multi-coverings of the worldsheet onto

the blown-up S2, which in our coordinates corresponds to setting XR = φ = 0.

As discussed above, nontrivial solutions to (5.1) can arise only from submanifolds

on which (J+ − J−) is degenerate. We now investigate whether this model contains such

submanifolds, of complex dimension one which may harbor nontrivial instanton corrections

to ZS2 . One possibility is the submanifold XR = XL = 0 which, however, in our model is

non-compact and therefore cannot harbor nontrivial instanton corrections (moreover, this

submanifold has nothing to do with the S2 that hosts the instantons in the β → ∞ limit).

This seems to be at odds with the supersymmetric localization result (4.12).

Another possibility relates to the interesting phenomenon of type-change in generalized

Kähler manifolds [36, 64, 65]. This occurs when J+−J− (or J++J−) develops a new zero

eigenvalue on a certain locus, signaling that on that locus a pair of semichiral fields has

turned into a pair of chiral (or twisted chiral) fields (see discussion in appendix D.2).

18These can be written as a single differential equation for K [47], which in the case of precisely one pair

of semichiral fields and a chiral field was given in [43].
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Let us investigate the possibility of type-change in the model (5.5). Using the for-

mula (D.6), the eigenvalues of 1
2(J+ − J−) are {0,±iλ} (each with multiplicity two) with

λ2 = −
ξ
(
|XL|2|φ|2 − |XR|2

)
−

(
|XR|2 +

(
2 + |XL|2

)
|φ|2

)√
ξ2 + 4r2

2r2β2

(√
ξ2 + 4r2 + 1

β

(
XLXR + X̄LX̄R

)) . (5.6)

The only locus on which the numerator vanishes is φ = XR = 0. However in this case r = 0

and the denominator vanishes as well. Taking the limit one finds λ2 → 1
β2(1+|XL|2)

. Thus,

for finite β there are no points in the patch under consideration where λ = 0; a similar

analysis in the other patch Φ2 6= 0 leads to the conclusion that there are no type-change

loci for J+ − J−. One can then check that ω is also non-degenerate since the metric is well

defined at the tip.

This result is a bit surprising. On the one hand, the absence of compact submanifolds

where J+ − J− is degenerate seems to imply that the only finite-action solutions to (5.1)

are constant maps, and therefore that the partition function does not receive instanton

corrections. This is the expectation, for instance, in [44]. On the other hand, the partition

function computed in (4.12) seems to represent instanton corrections (which are identical to

those of the Kähler model in the β → ∞ limit). Although we do not have a clear resolution

of this puzzle, that we leave as an open question, we propose the following possibility:

that the partition function, computed with our contour prescription, captures complexified

solutions to the equations (5.1) for the fields in Euclidean signature. Another possibility

that we cannot exclude, though, is that — because of the unavoidable divergences — the

partition function computed in this paper is not a well-defined object.

6 Discussion

In this paper we have studied a class of two-dimensional GLSMs with a gauged Wess-

Zumino term and off-shell N = (2, 2) SUSY. These involve chiral and semichiral fields

coupled to the usual vector multiplet, and are described at low energies by NLSMs on

generalized Kähler manifolds, as opposed to the more standard case of Kähler manifolds

when there is no gauged Wess-Zumino term. As we have shown, the GLSMs can be

placed on the round S2 (with the untwisted background of [4, 5]) while preserving all

supercharges [52], and we have explicitly constructed their actions. We have also shown

that the parameters controlling the gauged Wess-Zumino coupling enter in QA-exact action

terms. Thus, localization should be insensitive to the non-Kähler deformation, which we

have verified explicitly. Unfortunately, these theories do not admit enough twisted masses

to remove all massless modes, and their partition functions are inherently divergent. We

have computed the partition functions by means of supersymmetric localization on the

Coulomb branch, and proposed a contour prescription to remove the singularities.

In principle, the techniques described here provide a method for computing the par-

tition function of NLSMs on certain generalized Kähler manifolds, for which currently no

other method exists. However, as discussed, this approach raises some puzzles which we
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have not fully resolved. Although we discussed possible resolutions, this certainly deserves

further study.

As a simple but interesting example illustrating our point we have considered a GLSM

realizing a one-parameter family of generalized Kähler structures on the conifold. Although

the generalized holomorphic equations (5.1) of the A/B-model do not admit real, compact,

solutions in this case (apart from constant maps), the partition function as computed by

localization does seem to exhibit instanton contributions. This raises the question of how

to reconcile the two statements. We hope that our observation can thrust some progress

in the study of these topological models.

We should mention that semichiral fields can be T-dualized to a chiral plus twisted chi-

ral field [30, 66]; it would be very interesting if supersymmetric localization could shed light

into aspects of generalized mirror symmetry, especially non-perturbative ones. Regarding

possible extensions, it may be interesting to apply localization techniques to GLSMs re-

alizing generalized Kähler manifolds without semichiral fields, which are constructed by

coupling chiral and twisted chiral fields to the Large Vector Multiplet [29, 51]. These

models can realize compact manifolds with an H-field as well as noncompact ones.
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A N = (2, 2) supersymmetry

A.1 Conventions for spinors in Euclidean space

Here we give our conventions for spinors in Euclidean signature and some useful identities.

We use anticommuting Dirac spinors, and contract them as

ǫλ ≡ ǫαλα , ǫγµλ ≡ ǫα(γµ)α
βλβ , (A.1)

– 25 –



J
H
E
P
0
1
(
2
0
1
6
)
0
6
0

where the spinors have components labelled as λα =
( λ+

λ−

)
(we take lower index to denote

a “column vector”) and the gamma matrices with the above index structure read

γ1 =

(
0 1

1 0

)
, γ2 =

(
0 −i

i 0

)
, γ3 = −iγ1γ2 =

(
1 0

0 −1

)
. (A.2)

The spinor indices can be raised and lowered using the antisymmetric tensors Cαβ and

Cαβ , respectively, with C+− = C−+ = 1. For instance:

λα = Cαβλβ , λα = Cαβλ
β ⇒ λ+ = λ− , λ− = −λ+ . (A.3)

A.2 Supersymmetry on R2

The algebra of N = (2, 2) spinor derivatives on flat space is

{D±, D̄±} = ±2i∂±± (A.4)

where ∂±± = 1
2

(
∂1 ∓ i∂2

)
are spacetime derivatives and � = 2{∂++, ∂−−}, while all other

anticommutators vanish. They can be written in terms of spinor coordinates θ±, θ̄± as

D± =
∂

∂θ±
± iθ̄±∂±± , D̄± =

∂

∂θ̄±
± iθ±∂±± . (A.5)

We will use the notation

M
∣∣ ≡ M

∣∣
θ±=θ̄±=0

(A.6)

for the bottom component of a multiplet. The SUSY transformations are generated by

δ = ǭQ+ ǫ Q̄ = ǭ+Q+ + ǭ−Q− + ǫ+Q̄+ + ǫ−Q̄− . (A.7)

We consider ǫ and ǭ as two independent anticommuting Dirac spinors. The supercharges

satisfy {Q±, Q̄±} = ∓2i∂± and anticommute with the spinor derivatives. In terms of spinor

coordinates:

Q± =
∂

∂θ±
∓ iθ̄±∂±± , Q̄± =

∂

∂θ̄±
∓ iθ±∂±± . (A.8)

A.3 N = (2, 2) supermultiplets

Vector multiplet. To formulate gauge theories, one introduces a vector multiplet in

superspace. There are various such vector multiplets. The most standard one is the

vector multiplet V , with gauge transformation δgV = i(Λ̄ − Λ), with Λ a chiral gauge

parameter. To derive SUSY transformation rules and explicit actions in component form,

it is most convenient to introduce gauge-covariant superderivatives ∇±, ∇̄±. These can be

constructed in different representations, according to the matter fields they are acting on.

In chiral representation (where all objects transform with a chiral gauge parameter), they

are given in terms of the usual superderivatives by

∇± = e−V D±e
V , ∇̄± = D̄± , (A.9)
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and they satisfy the algebra

{∇±, ∇̄±} = ±2iD±± , Σ = {∇̄+,∇−} , (A.10)

where D±± denote the gauge-covariant spacetime derivatives while Σ is the field strength

supermultiplet. In the Abelian case Σ = D̄+D−V .

The component fields of the vector multiplet Σ are defined by

σ = Σ| , iλ+ = ∇+Σ| , −iλ− = ∇−Σ̄| , −iD̃ = ∇+∇̄−Σ| , (A.11)

σ̄ = Σ̄| , iλ̄+ = ∇̄+Σ̄| , −iλ̄− = ∇̄−Σ| , −i ¯̃D = ∇̄+∇−Σ̄| , (A.12)

where we used the complex notation

σ = iσ1 − σ2 , σ̄ = −iσ1 − σ2 , D̃ = −iF12 +D , ¯̃D = −iF12 −D , (A.13)

and −iF12 = [D1, D2] = 2i[D−−, D++].

One may similarly define gauge-covariant supercharges Q±, Q̄± such that the SUSY

transformations are generated by

δ = ǭQ+ ǫQ̄ = ǭ+Q+ + ǭ−Q− + ǫ+Q̄+ + ǫ−Q̄− . (A.14)

Matter multiplets. To define the components of X and X̄ we use the gauge-covariant

superderivatives:

X = X
∣∣ , ψ± = ∇±X

∣∣ , F = ∇+∇−X
∣∣ ,

X̄ = X̄
∣∣ , ψ̄± = ∇̄±X̄

∣∣ , F̄ = ∇̄+∇̄−X̄
∣∣ ,

χ̄± = ∇̄±X
∣∣ , M∓± = ∇±∇̄∓X

∣∣ , M±± = ∇±∇̄±X
∣∣ , η̄± = ∇+∇−∇̄±X

∣∣ ,
χ± = ∇±X̄

∣∣ , M̄∓± = ∇̄±∇∓X̄
∣∣ , M̄±± = ∇̄±∇±X̄

∣∣ , η± = ∇̄+∇̄−∇±X̄
∣∣ .

(A.15)

The multiplet X can describe chiral, twisted chiral,19 as well as left and right semichiral

multiplets as follows:

Chiral : χ̄± = M±± = M±∓ = η̄± = 0

Twisted Chiral : ψ−= χ̄+=F =M+±= η̄+=0, M−−=−2iD−−X, η̄−=−2iD−−ψ+

Left Semichiral : χ̄+ = M+± = η̄+ = 0

Right Semichiral : χ̄− = M−± = η̄− = 0 .

The most convenient way to determine the SUSY transformations of the component

fields, defined by expressions such as
[
∇n

± ∇̄m
± X

] ∣∣ above, is by using identities such as

δ
[
∇n

± ∇̄m
± X

] ∣∣ ≡
[
∇n

± ∇̄m
± δX

] ∣∣ =
[
(ǭ∇+ ǫ ∇̄)∇n

± ∇̄m
± X

] ∣∣ , (A.16)

19A twisted chiral field cannot couple minimally to the vector multiplet. Thus, in the case of a twisted

chiral field, these identifications and the SUSY transformations are valid only when the field is neutral. For

instance, the twisted chiral field could be taken to be the Abelian vector multiplet Σ with the following

identifications: X = σ, ψ+ = iλ+, χ̄− = −iλ−, M−+ = −iD̃.
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where we have used the fact that ∇±’s and Q±’s anticommute and that ∇±| = Q±|, and
similarly for the barred operators. From this we find:

δX = ǭψ + ǫχ̄ ,

δψ+ = −ǭ−F + ǫ+2iD++X + ǫ−σ̄X − ǫ+M++ − ǫ−M−+ ,

δψ− = ǭ+F + ǫ+σX − ǫ−2iD−−X − ǫ+M+− − ǫ−M−− ,

δF = ǫ+2iD++ψ− + ǫ−2iD−−ψ+ − ǫ+σψ+ + ǫ−σ̄ψ− − i(ǫ+λ+ + ǫ−λ−)X + ǫη̄ ,

δχ̄± = ǭ−M±+ − ǭ+M±− ,

δM±+ = ǭ+η̄± + ǫ−2iD++χ̄± − ǫ+σ̄χ̄± ,

δM±− = ǭ−η̄± + ǫ+2iD−−χ̄± + ǫ−σχ̄± ,

δη̄+ = −i(ǫλ)χ̄+ + ǫ+(−2iD−−M++ − σ̄M+−) + ǫ−(2iD++M+− − σM++) ,

δη̄− = −i(ǫλ)χ̄− + ǫ−(2iD++M−− − σM−+) + ǫ+(−2iD−−M−+ − σ̄M−−) ,

(A.17)

as well as similar transformations for X̄. Using identities such as

ǭ−2iD++ψ− − ǭ+2iD−−ψ+ = iǭγµDµψ ,

one may write these transformations in the form (2.8). For certain computations (such as

proving invariance of the action on S2) we find it convenient to keep the index notation

and introduce the operator

Pαβ ≡
(
2iD++ σ

σ̄ −2iD−−

)
,

whose supersymmetric variation is δPαβ = i
(
ǫαλ̄β + ǭβλα

)
. In this way, all transformation

rules can be written in the compact form:

δX = ǭψ + ǫχ̄ ,

δψα = ǫβ(PβαX −Mβα) + ǭαF ,

δF = ǫαPαβψ
β − i(ǫλ)X + ǫη̄ ,

δχ̄α = Mαβ ǭ
β ,

δMαβ = ǫγPγβχ̄α − η̄αǭβ ,

δη̄α = ǫκPκγMαβC
γβ − i(ǫλ)χ̄α ,

δX̄ = ǫψ̄ + ǭχ ,

δψ̄α = ǭβ(PαβX̄ − M̄βα) + ǫαF̄ ,

δF̄ = ǭαPβαψ̄
β − i(ǭλ̄)X̄ + ǭη ,

δχα = M̄αβǫ
β ,

δM̄αβ = ǭγPβγχα − ηαǫβ ,

δηα = ǭκPγκM̄αβC
γβ − i(ǭλ̄)χα .

(A.18)

By setting the appropriate fields to zero, these become the SUSY transformations for chiral,

twisted chiral and semichiral multiplets.

The component action is found by writing the spinorial measure as
∫

d4θ X̄X =
[
∇+∇−∇̄+∇̄− (X̄X)

] ∣∣∣ , (A.19)

using that the rules for Grassmann integration and differentiation are the same, and that

the integrand is gauge-invariant.
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Semichiral vector multiplet. Here we give a brief review of the Semichiral Vector

Multiplet (SVM for short), following [29, 51]. For simplicity we describe the Abelian case.

The SVM gauges isometries that act only on semichiral fields and is defined by four vector

multiplets (VL, VR,V, Ṽ), with gauge transformations

δVL = i(Λ̄L − ΛL) , δVR = i(Λ̄R − ΛR) , iδV = i(ΛL − ΛR) , iδṼ = i(ΛL − Λ̄R) ,

(A.20)

where ΛL,R are semichiral fields. These vector multiplets are not independent, but satisfy

− 1

2
V ′ ≡ Re Ṽ = ReV , Im (Ṽ− V) = VR , Im (Ṽ+ V) = VL . (A.21)

Then,

V =
1

2

(
− V ′ + i(VL − VR)

)
, Ṽ =

1

2

(
− V ′ + i(VL + VR)

)
, (A.22)

where V ′ must transform under gauge transformations as δV ′ = (ΛR + Λ̄R − ΛL − Λ̄L).

There are two field strengths which are invariant under the full gauge symmetry (A.20):

F ≡ D̄+D̄−V and F̃ ≡ D̄+D−Ṽ , (A.23)

chiral and twisted chiral, respectively. The kinetic action for the SVM is given by

LSVM = − 1

2e2

∫
d4θ

(
¯̃
FF̃− F̄F

)
, (A.24)

and the FI terms are given by

LFI =

(
i t

∫
d2θ̃ F̃+ c.c.

)
+

(
i s

∫
d2θ F+ c.c.

)
. (A.25)

From the definitions (A.23), the FI terms can also be written as D-terms.

A.4 Supersymmetry on S2

The metric on the round sphere of radius r is

ds2 = r2(dθ2 + sin2 θ dϕ2) .

We consider Killing spinors on S2 satisfying

Dµǫ =
i

2r
γµǫ , Dµǭ =

i

2r
γµǭ . (A.26)

The gauge-covariant derivatives on S2 read

P++ = iD1 +D2 =
i

r

(
∂θ −

i

sin θ
∂ϕ

)
− is

r

cos θ

sin θ
,

P−− = −iD1 +D2 = − i

r

(
∂θ +

i

sin θ
∂ϕ

)
− is

r

cos θ

sin θ
,

(A.27)

where s = sz − ρ(m)
2 is the effective spin. Using these derivatives, one can check that
(
ǫ+

ǫ−

)
= ei

ϕ
2

(
cos θ

2

i sin θ
2

)
,

(
ǭ+

ǭ−

)
= e−iϕ

2

(
i sin θ

2

cos θ
2

)
(A.28)

satisfy the Killing spinor equations (A.26). We use the latter spinors ǫ, ǭ to construct the

localizing supercharge QA.
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A.5 Weyl covariance

The additional terms that are supplemented to the R2 transformations of fields of a given

R-charge, are determined by the requirement that the SUSY transformations (A.18) are

covariant under Weyl transformations. The metric transforms infinitesimally as δgµν =

2Ω gµν , hence it follows that the spin connection transforms as

δωµ
mn = eµ

meν
n∂νΩ . (A.29)

For a field ϕ of spin sz and weight w under a Weyl transformation, i.e., δϕ = −wΩϕ, we

have:

δ(P±±ϕ) = −wΩP±±ϕ− (w ± sz)(P±±Ω)ϕ . (A.30)

This uniquely determines the additional terms one must add to the flat-space transforma-

tion rules (in addition to replacing the derivatives by covariant derivatives) to determine

the transformation rules on S2. We assume that ǫ is a “positive” Killing spinor satisfying

Dµǫ =
i

2r
γµǫ ⇒ P±±ǫ

± = −1

r
ǫ± . (A.31)

We also take the spinor ǭ to satisfy the same equation. Then the additional terms follow

by the replacement rule

ǫ±P±±ϕ
replace−−−−→ ǫ±P±±ϕ + (−1)F (w ± sz)ϕP±±ǫ

±

= ǫ±P±±ϕ − (−1)F (w ± sz)
1

r
ϕ ǫ± , (A.32)

where F = 0 if ϕ is a boson and F = 1 if it is a fermion, and we have used the Killing

spinor equation (A.31).

We denote the scaling dimension of the lowest component X = X| by q
2 . From the

definitions (A.15), Weyl weights and R-charges of all the other component fields are deter-

mined and given in table 1. Using those charges and following the prescription (A.32), we

find that the SUSY transformations on S2 are given by (3.4).

A.6 BPS equations for the semichiral multiplet

Here we show that the BPS equations following from the transformation rules (3.4) have

only one smooth solution for q 6= 0: X = F = M = 0. Let us first write down the BPS

equations following from QAψ± = QAψ̄± = 0. Using (A.28) we find

0 = − sin
θ

2

(
2D++X − ie−iϕF + iM++

)
− cos

θ

2

(
σ̄X +

q

2r
X −M−+

)
,

0 = +cos
θ

2

(
2D−−X − ie−iϕF − iM−−

)
+ sin

θ

2

(
σX − q

2r
X −M+−

)
,

0 = +cos
θ

2

(
2D++X̄ − ieiφF̄ + iM̄++

)
+ sin

θ

2

(
X̄σ − q

2r
X̄ + M̄−+

)
,

0 = − sin
θ

2

(
2D−−X̄ − ieiφF̄ − iM̄−−

)
− cos

θ

2

(
X̄σ̄ +

q

2r
X̄ + M̄+−

)
.

(A.33)
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Recall that for a particular semichiral field, only some components of Mαβ are non-zero

in these equations. Note also that for Mαβ = 0, these reduce to the BPS equations for a

chiral field of R-charge q.

Let us now look at the equations following from other spinor variations. Take for

instance XR and X̄R, i.e., QAχ̄+ = QAχ+ = QAη̄+ = QAη+ = 0 :

0 = M++ cos
θ

2
− iM+− sin

θ

2
, (A.34)

0 = iM̄++ sin
θ

2
− M̄+− cos

θ

2
, (A.35)

0 = cos
θ

2

(
2iD−−M++ +

(
σ̄ +

q + 2

2r

)
M+−

)
+ sin

θ

2

(
2D++M+− + i

(
σ − q

2r

)
M++

)
,

(A.36)

0 = sin
θ

2

(
2D−−M̄++ − i

(
σ +

q + 2

2r

)
M̄+−

)
+ cos

θ

2

(
2iD++M̄+− −

(
σ̄ − q

2r

)
M̄++

)
.

(A.37)

Consider the equations (A.34) and (A.35) and their complex conjugates. Imposing the

reality condition X† = X̄, ψ† = ψ̄, M † = M̄ , etc., immediately leads to

0 = M++ cos θ = M+− cos θ ⇒ M++ = M+− = 0 , (A.38)

and (A.36) and (A.37) are trivially satisfied.20 The same analysis holds for left semichiral

fields and thus one also concludes M−− = M−+ = 0. Finally, plugging Mαβ = 0 into

QAψ = QAψ̄ = 0 reduces those equations to the BPS equations for a chiral field. As

discussed in [4, 5], for generic q the only smooth solution is X = F = M = 0.

B GLSMs for semichiral fields

B.1 Kinetic action and positivity of the metric

Consider a theory with NF pairs of semichiral fields (Xi
L,X

i
R) with i = 1, . . . , NF , where

the left and right partners transform in the same representation R of the gauge and/or

flavor group. Then the most general gauge-invariant quadratic kinetic action follows from

the superspace Lagrangian

L =

∫
d4θ

(
βij X̄

i
LX

j
L + γij X̄

i
RX

j
R − αij X̄

i
LX

j
R − α†

ij X̄
i
RX

j
L

)
, (B.1)

where β, γ are Hermitian matrices while α is a generic complex matrix. By field redefini-

tions one can set β and γ to be diagonal with entries ±1, 0. Requiring the metric to be

positive-definite after having integrated out the auxiliary fields, leads to the following two

conditions:

(α†)−1γα−1 < 0 and β(α†)−1γα−1β − β > 0 . (B.2)

20At the special point θ = π
2

the fields M need not vanish, but we restrict ourselves to smooth field

configurations.
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These force β = γ = −1 and by the singular value decomposition theorem we can, by

further unitary field redefinitions, reduce α to a diagonal matrix with non-negative entries

which now have to satisfy αii > 1 as in the case NF = 1. Thus, in the presence of multiple

semichiral pairs, we can always choose a basis that diagonalizes the quadratic kinetic action.

B.2 Semichiral-semichiral duality

An interesting feature of semichiral fields is that a pair (XL,XR) in a representation (R,R)

of the gauge and/or flavor group, is “dual” to a pair in representation (R,R) or (R,R) [66].

Unlike T-duality, this is simply a change of coordinates which does not change the geometry

(one may call this a coordinate duality). To see how this works, consider a pair of semichiral

fields in representation (R,R) with an action of the form (2.11). The idea is to relax the

condition of semichirality on XR, imposing it by a semichiral Lagrange multiplier X̃R, i.e.,

L = −
∫

d4θ
[
X̄LXL + X̄RXR + α

(
X̄LXR + X̄RXL

)
−
(
X̃RXR + ¯̃

XRX̄R

)]
. (B.3)

This action is gauge-invariant provided X̃R is in representation R. Integrating out X̃R

simply imposes that XR is right semichiral and leads to the original model. On the other

hand, integrating out XR leads to the change of coordinates X̃R = X̄R+α X̄L and the dual

action reads

L =

∫
d4θ

[
(α2 − 1)X̄LXL + ¯̃

XRX̃R − α
(
X̃RXL + X̄L

¯̃
XR

)]
. (B.4)

This is a GLSM for semichiral fields in representation (R,R). After a rescaling of XL to

normalize the first term, we see that the relation between α in (2.11) and β in (2.15) is

β =
α√

α2 − 1
. (B.5)

Of course, one could similarly relax the semichirality condition on XL instead, which would

lead to a model with semichiral fields in representation (R,R).

C One-loop determinants

We first evaluate the bosonic determinant. In addition to the lowest components XL

and XR we also have the four fields Mαβ and two auxiliary fields FL, FR, therefore the

quadratic terms read X̄OBX with X̄ = (X̄L, X̄R, M̄R
+−, M̄

R
++, M̄

L
−−, M̄

L
−+, F̄

L, F̄R) and

X = (XL, XR,ML
−+, M

L
−−,M

R
++,M

R
+−, F

L, FR)T. The 8×8 matrix of the kinetic operator
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OB is then given by



OX αOX
q
2r − σ 2iD++ −α 2iD−− −α

(
q
2r + σ̄

)
0 0

αOX OX α
(

q
2r − σ

)
α 2iD++ −2iD−− −

(
q
2r + σ̄

)
0 0

α
(
− q

2r + σ
)

− q
2r + σ 0 0 0 −1 0 0

α 2iD−− 2iD−− 0 α 0 0 0 0

−2iD++ −α 2iD++ 0 0 α 0 0 0
q
2r + σ̄ α

(
q
2r + σ̄

)
−1 0 0 0 0 0

0 0 0 0 0 0 1 α

0 0 0 0 0 0 α 1




(C.1)

where OX is given in (4.5). Expanding the fields in X in terms of the spherical harmonics(
Y s
j, j3

, Y s
j, j3

, Y s
j, j3

, Y s−1
j, j3

, Y s+1
j, j3

, Y s
j, j3

, Y s
j, j3

, Y s
j, j3

)
and using

D±±Y
s
j, j3

= ±s±
2r

Y s±1
j, j3

with s± =
√
j(j + 1)− s(s± 1) , (C.2)

we obtain for j ≥ |ρ(m)|
2 + 1:

detOB =

(
α2 − 1

)2

r4

[
j2 +

(α2 − 1)ρ(m)2

4
− α2

(q
2
− irρ(σ1)

)2
]
×

×
[
(j + 1)2 +

(α2 − 1)ρ(m)2

4
− α2

(q
2
− irρ(σ1)

)2
]
, (C.3)

with multiplicity 2j + 1. Here ρ(·) denotes a weight vector in the representation R. There

are three more cases that need to be considered before we can write down the full deter-

minant.

• For j = |ρ(m)|
2 ≥ 1

2 , either Y s+1
j, j3

or Y s−1
j, j3

does not exist. For instance, for ρ(m) ≥ 1,

Y s−1
j, j3

does not exist, then we can remove the fourth row/column of the matrix OB. Si-

miliarly, for ρ(m) ≤ −1, Y s+1
j, j3

does not exist, then we can remove the fifth row/column

of the matrix OB. In this case, the determinant becomes 1
α
detOB at j = |ρ(m)|

2 .

• For j = ρ(m) = 0, only Y 0
0, j3

exists, and we remove both the fourth and the fifth

row/column of the matrix OB. The determinant becomes 1
α2 detOB at j = ρ(m) = 0.

• For j = |ρ(m)|
2 − 1 ≥ 0, only one of Y s+1

j, j3
and Y s−1

j, j3
exists. In both cases, the

determinant is only α with multiplicity |ρ(m)| − 1.

Putting all these cases together, we obtain the full determinant in the bosonic sector

(ignoring overall constants):

DetOB =
∏

ρ∈R

α|ρ(m)|−1

α|ρ(m)|+1

∞∏

j=
|ρ(m)|

2

[
j2 +

(α2 − 1)ρ(m)2

4
− α2

(
q

2
− irρ(σ1)

)2]2j+1

×

×
[
(j + 1)2 +

(α2 − 1)ρ(m)2

4
− α2

(
q

2
− irρ(σ1)

)2]2j+1((
α2 − 1

)2

r4

)2j+1

. (C.4)
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Now let us work out the fermionic determinant. First we work out the de-

terminant factor produced by the fields ψ and η. Proceeding as before, we write

the action as Ψ̄OFΨ with Ψ̄ =
(
ψ̄L−, ψ̄L+, ψ̄R−, ψ̄R+, ηR−, ηL+, χR−, χL+

)
, Ψ =

(ψL+, ψL−, ψR+, ψR−, η̄L+, η̄R−, χ̄L+, χ̄R−)T and OF is given by




−
(

q
2r + σ̄

)
2iD−− −α

(
q
2r + σ̄

)
2iαD−− −1 0 0 0

−2iD++
q
2r − σ −2iαD++ α

(
q
2r − σ

)
0 α 0 0

−α
(

q
2r + σ̄

)
2iαD−− −

(
q
2r + σ̄

)
2iD−− −α 0 0 0

−2iαD++ α
(

q
2r − σ

)
−2iD++

q
2r − σ 0 1 0 0

−α 0 −1 0 0 0 0 0

0 1 0 α 0 0 0 0

0 0 0 0 0 0 −α
(

q
2r − σ

)
−2iD−−

0 0 0 0 0 0 2iD++ α
(

q
2r + σ̄

)




.

(C.5)

Expanding Ψ in the spherical harmonics
(
Y

s− 1
2

j, j3
, Y

s+ 1
2

j, j3
, Y

s− 1
2

j, j3
, Y

s+ 1
2

j, j3
, Y

s− 1
2

j, j3
, Y

s+ 1
2

j, j3
, Y

s− 1
2

j, j3
,

Y
s+ 1

2
j, j3

)
, we obtain for j ≥ |ρ(m)|

2 + 1
2 :

detOF =

(
α2 − 1

)2

r4

[(
j +

1

2

)2

+
(α2 − 1)ρ(m)2

4
− α2

(
q

2
− irρ(σ1)

)2]2
, (C.6)

with multiplicity 2j + 1. For j = |ρ(m)|
2 − 1

2 ≥ 0 only one of the eigenfunctions exists. For

instance, when ρ(m) ≥ 1, only Y
s+ 1

2
j, j3

exists, which leads to the following eigenvalue with

multiplicity |ρ(m)|:

−
(
α2 − 1

)
α2

r2

( |ρ(m)|
2

+
q

2
− irρ(σ1)

)( |ρ(m)|
2

− q

2
+ irρ(σ1)

)
.

For ρ(m) ≤ −1 only Y
s− 1

2
j, j3

exists, and the eigenvalue is same as above. The case ρ(m) = 0

does not exist but formally we can still use the same expression. Putting all these cases

together, we obtain the full determinant in the fermionic sector:

DetOF =
∏

ρ∈R

(
(1− α2)α2

r2

)|ρ(m)|[ρ(m)2

4
−
(
q

2
− irρ(σ1)

)2]|ρ(m)|

×

×
∞∏

j=
|ρ(m)|+1

2

(
α2 − 1

r2

)4j+2[(
j +

1

2

)2

+
(α2 − 1)ρ(m)2

4
− α2

(
q

2
− irρ(σ1)

)2]4j+2

. (C.7)

Putting these bosonic and fermionic determinants together leads to many cancellations and

ignoring overall factors, the one-loop determinant reads

ZLR =
DetOF

DetOB
=

∏

ρ∈R

(−1)|ρ(m)|

ρ(m)2

4 −
(
q
2 − irρ(σ1)

)2 . (C.8)
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Now we show that (C.8) can be rewritten in a more recognizable form, as a one-loop

determinant for chiral fields. For a pair of chiral fields with opposite R-charges and gauge

charges one has the expression in (4.9) [4, 5]. Let us set q = 0 for now and then shift rρ(σ1)

to rρ(σ1)+i q2 in the final result. Using the property of the Γ-function, Γ(z+n) = (z)n ·Γ(z),
where (z)n ≡ ∏n−1

k=0(z + k) is the Pochhammer symbol, we obtain for ρ(m) ≥ 1 (the cases

ρ(m) = 0 and ρ(m) ≤ −1 are similar)

∏

ρ∈R

Γ
(
−irρ(σ1)− ρ(m)

2

)

Γ
(
1 + irρ(σ1)− ρ(m)

2

)
Γ
(
irρ(σ1) +

ρ(m)
2

)

Γ
(
1− irρ(σ1) +

ρ(m)
2

)

=
∏

ρ∈R

(
1 + irρ(σ1)− ρ(m)

2

)
ρ(m)−1(

−irρ(σ1)− ρ(m)
2

)
ρ(m)+1

=
∏

ρ∈R

(−1)ρ(m)

ρ(m)2

4 − (−irρ(σ1))2
,

which coincides with (C.8) after the appropriate shift.

D Target space geometry

D.1 Metric, B-field and complex structures

For the reader’s convenience, here we give some relevant formulæ to compute the metric,

the B-field and the complex structures J± from the generalized Kähler potential K. For a

comprehensive review and details see [40]. Defining E = 1
2(g +B) one has

ELL = CLLK
−1
LRJsKRL EcL = CcLK

−1
LRJsKRL

ELR = JsKLRJs + CLLK
−1
LRCRR EcR = JcKcRJs + CcLK

−1
LRCRR

ELc = KLc + JsKLcJc + CLLK
−1
LRCRc Ecc = Kcc + JcKccJc + CcLK

−1
LRCRc

ELt = −KLt − JsKLtJt + CLLK
−1
LRARt Ect = −Kct − JcKctJt + CcLK

−1
LRARt

ERL = −KRLJsK
−1
LRJsKRL EtL = CtLK

−1
LRJsKRL

ERR = −KRLJsK
−1
LRCRR EtR = JtKtRJs + CtLK

−1
LRCRR

ERc = KRc −KRLJsK
−1
LRCRc Etc = Ktc + JtKtcJc + CtLK

1
LRCRc

ERt = −KRt −KRLJsK
−1
LRARt Ett = −Ktt − JtKttJt + CtLK

−1
LRARt .

(D.1)

Here A and C are matrices defined as follows (with the two indices suppressed)

A =

(
2iK 0

0 −2iK

)
, C =

(
0 2iK

−2iK 0

)
, (D.2)

where K itself is a matrix whose entries are second derivatives of the generalized poten-

tial with c, t, s denoting chiral, twisted chiral and semichiral directions, respectively. For

instance

KLR ≡




∂2K
∂XL∂XR

∂2K
∂XL∂X̄R

∂2K
∂X̄L∂XR

∂2K
∂X̄L∂X̄R


 , (D.3)

and similarly for KRc =
∂2K

∂XR∂φ
, etc.
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The complex structures read [40, 67]

J+ =




Js 0 0 0

K−1
RLCLL K−1

RLJsKLR K−1
RLCLc K−1

RLCLt

0 0 Jc 0

0 0 0 Jt




(D.4)

and

J− =




K−1
LRJsKRL K−1

LRCRR K−1
LRCRc K−1

LRARt

0 Js 0 0

0 0 Jc 0

0 0 0 −Jt




, (D.5)

where Jc,t,s are the canonical complex structures of the form
(
i 0
0 −i

)
and of the appropriate

dimension.

D.2 Type-change loci

The type of a generalized Kähler structure is given by

(k+, k−) =
(
dimC ker(J+ − J−) , dimC ker(J+ + J−)

)
.

In terms of N = (2, 2) multiplets, k+ and k− simply count the number of chiral and twisted

chiral fields, respectively; the number of semichiral fields is given by

dimC coIm[J+, J−] = d− k+ − k− ,

where coIm is the co-image, while d the complex dimension of the manifold. An important

aspect of generalized complex geometry is that the type may jump discontinuously on so-

called type-changing loci [68]. On these loci, a pair of semichiral fields (XL,XR) becomes

either a pair of chiral or a pair of twisted chiral fields.

To study this phenomenon one may compute the eigenvalues of J+ ± J−. For con-

creteness, let us consider an arbitrary generalized potential K that depends on a single

chiral field and a pair of semichiral fields. At generic points on the manifold the type is

(k+, k−) = (1, 0). From (D.4) and (D.5) one finds that the eigenvalues of 1
2(J+ − J−) are

{0,±iλ}, each with multiplicity two, with

λ =

√
|Kl̄r|2 −Krr̄Kll̄

|Kl̄r|2 − |Klr|2
. (D.6)

The eigenvalues of 1
2(J+ + J−) are {±i,±iλ̃}, each with multiplicity two, with

λ̃ =

√
|Klr|2 −Krr̄Kll̄

|Klr|2 − |Kl̄r|2
. (D.7)

On the locus λ = 0 the type jumps to (k+, k−) = (3, 0), where the manifold is locally

described by three chiral fields, and on the locus λ̃ = 0 the type jumps to (k+, k−) = (1, 2),
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where it is locally described by one chiral field and two twisted chiral fields. Whether these

loci exist or not depends on the specific potential K. For a study of type-change in various

WZW models see, for example, [69].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[40] U. Lindström, M. Roček, R. von Unge and M. Zabzine, Generalized Kähler manifolds and

off-shell supersymmetry, Commun. Math. Phys. 269 (2007) 833 [hep-th/0512164] [INSPIRE].
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