343 research outputs found

    Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock

    Get PDF
    Over a two-year duration, we have compared the frequency of the 199Hg+ 5d106s 2S 1/2 (F=0) 5d9 6s2 2D 5/2 (F=2) electric-quadrupole transition at 282 nm with the frequency of the ground-state hyperfine splitting in neutral 133Cs. These measurements show that any fractional time variation of the ratio nu(Cs)/nu(Hg) between the two frequencies is smaller than +/- 7 10^-15 / yr (1 sigma uncertainty). According to recent atomic structure calculations, this sets an upper limit to a possible fractional time variation of g(Cs) m_e / m_p alpha^6.0 at the same level.Comment: 4 pages with 3 figures. RevTeX 4, Submitted to Phys. Rev. Let

    Lorentz invariant intrinsic decoherence

    Get PDF
    Quantum decoherence can arise due to classical fluctuations in the parameters which define the dynamics of the system. In this case decoherence, and complementary noise, is manifest when data from repeated measurement trials are combined. Recently a number of authors have suggested that fluctuations in the space-time metric arising from quantum gravity effects would correspond to a source of intrinsic noise, which would necessarily be accompanied by intrinsic decoherence. This work extends a previous heuristic modification of Schr\"{o}dinger dynamics based on discrete time intervals with an intrinsic uncertainty. The extension uses unital semigroup representations of space and time translations rather than the more usual unitary representation, and does the least violence to physically important invariance principles. Physical consequences include a modification of the uncertainty principle and a modification of field dispersion relations, in a way consistent with other modifications suggested by quantum gravity and string theory .Comment: This paper generalises an earlier model published as Phys. Rev. A vol44, 5401 (1991

    Complementarity and Young's interference fringes from two atoms

    Get PDF
    The interference pattern of the resonance fluorescence from a J=1/2 to J=1/2 transition of two identical atoms confined in a three-dimensional harmonic potential is calculated. Thermal motion of the atoms is included. Agreement is obtained with experiments [Eichmann et al., Phys. Rev. Lett. 70, 2359 (1993)]. Contrary to some theoretical predictions, but in agreement with the present calculations, a fringe visibility greater than 50% can be observed with polarization-selective detection. The dependence of the fringe visibility on polarization has a simple interpretation, based on whether or not it is possible in principle to determine which atom emitted the photon.Comment: 12 pages, including 7 EPS figures, RevTex. Submitted to Phys. Rev.

    Spontaneous emission of an atom in front of a mirror

    Full text link
    Motivated by a recent experiment [J. Eschner {\it et al.}, Nature {\bf 413}, 495 (2001)], we now present a theoretical study on the fluorescence of an atom in front of a mirror. On the assumption that the presence of the distant mirror and a lens imposes boundary conditions on the electric field in a plane close to the atom, we derive the intensities of the emitted light as a function of an effective atom-mirror distance. The results obtained are in good agreement with the experimental findings.Comment: 8 pages, 6 figures, revised version, references adde

    Narrow Spectral Feature In Resonance Fluorescence With A Single Monochromatic Laser Field

    Get PDF
    We describe the resonance fluorescence spectrum of an atomic three-level system where two of the states are coupled by a single monochromatic laser field. The influence of the third energy level, which interacts with the two laser-coupled states only via radiative decays, is studied in detail. For a suitable choice of parameters, this system gives rise to a very narrow structure at the laser frequency in the fluorescence spectrum which is not present in the spectrum of a two-level atom. We find those parameter ranges by a numerical analysis and use the results to derive analytical expressions for the additional narrow peak. We also derive an exact expression for the peak intensity under the assumption that a random telegraph model is applicable to the system. This model and a simple spring model are then used to describe the physical origins of the additional peak. Using these results, we explain the connection between our system, a three-level system in V-configuration where both transitions are laser driven, and a related experiment which was recently reported.Comment: 14 pages, 15 figures, extension of the spring mode

    Cerebrospinal fluid markers of neuronal and glial cell damage in patients with autoimmune neurologic syndromes with and without underlying malignancies

    Get PDF
    Autoimmune neurologic syndromes can be paraneoplastic (associated with malignancies and/or onconeural antibodies), or non-paraneoplastic. Their clinical presentation is often similar. As prognosis is related to malignancy treatment, better biomarkers are needed to identify patients with malignancy. We investigated cerebrospinal fluid (CSF) markers of neuronal (neurofilament light chain, NFL and total tau protein, T-tau) and glial (glial fibrillary acidic protein) damage. CSF-NFL and T-tau were increased in both paraneoplastic and non-paraneoplastic autoimmune syndromes. Patients with manifest malignancies were older, had less epilepsy, more focal central and peripheral neurological signs and symptoms, and worse long-term outcome, than those without malignancy. CSF-NFL-levels predicted long-term outcome but were not diagnostic for malignancy, after age adjustment

    Theory and applications of atomic and ionic polarizabilities

    Get PDF
    Atomic polarization phenomena impinge upon a number of areas and processes in physics. The dielectric constant and refractive index of any gas are examples of macroscopic properties that are largely determined by the dipole polarizability. When it comes to microscopic phenomena, the existence of alkaline-earth anions and the recently discovered ability of positrons to bind to many atoms are predominantly due to the polarization interaction. An imperfect knowledge of atomic polarizabilities is presently looming as the largest source of uncertainty in the new generation of optical frequency standards. Accurate polarizabilities for the group I and II atoms and ions of the periodic table have recently become available by a variety of techniques. These include refined many-body perturbation theory and coupled-cluster calculations sometimes combined with precise experimental data for selected transitions, microwave spectroscopy of Rydberg atoms and ions, refractive index measurements in microwave cavities, ab initio calculations of atomic structures using explicitly correlated wave functions, interferometry with atom beams, and velocity changes of laser cooled atoms induced by an electric field. This review examines existing theoretical methods of determining atomic and ionic polarizabilities, and discusses their relevance to various applications with particular emphasis on cold-atom physics and the metrology of atomic frequency standards.Comment: Review paper, 44 page

    Remote frequency measurement of the 1S0-3P1 transition in laser cooled Mg-24

    Get PDF
    We perform Ramsey-Bord\'e spectroscopy on laser-cooled magnesium atoms in free fall to measure the 1S0 \rightarrow 3P1 intercombination transition frequency. The measured value of 655 659 923 839 730 (48) Hz is consistent with our former atomic beam measurement (Friebe et al 2008 Phys. Rev. A 78 033830). We improve upon the fractional accuracy of the previous measurement by more than an order of magnitude to 7e-14. The magnesium frequency standard was referenced to a fountain clock of the Physikalisch-Technische Bundesanstalt (PTB) via a phase-stabilized telecom fiber link and its stability was characterized for interrogation times up to 8000 s. The high temperature of the atomic ensemble leads to a systematic shift due to the motion of atoms across the spectroscopy beams. In our regime, this leads to a counterintuitive reduction of residual Doppler shift with increasing resolution. Our theoretical model of the atom-light interaction is in agreement with the observed effect and allows us to quantify its contribution in the uncertainty budget.Comment: 16 pages, 8 figures. Accepted in New Journal of Physic

    Component analysis of nutritionally rich chloroplasts: recovery from conventional and unconventional green plant species

    Get PDF
    A study of the literature indicates that chloroplasts synthesise a range of molecules, many of which have nutritional value for humans, but as yet no one has established the nutritional credentials of chloroplasts recovered from plant cells. Chloroplast-rich-fractions (CRFs) were prepared from green plant species and the macro- and micronutrient composition compared with the whole leaf materials (WLMs). The results indicated that, on a dry weight basis, CRF material from a range of green biomass was enriched in lipids and proteins, and in a range of micronutrients compared with the WLM. Vitamins E, pro-vitamin A, and lutein were all greater in CRF preparations. Of the minerals, iron was most notably concentrated in CRF. Spinach CRFs possessed the highest α-tocopherol (62 mg 100 g-1 , dry weight (DW)), β-carotene (336 mg 100 g- 1 DW) and lutein (341 mg 100 g-1 DW) contents, whilst grass CRFs had the highest concentration of alpha-linolenic acid (ALA) (69.5 mg g-1). The higher concentrations of α-tocopherol, β-carotene, lutein, ALA and trace minerals (Fe and Mn) in CRFs suggest their potential use as concentrated ingredients in food formulations deficient in these nutrients

    A Multicenter Evaluation of Diagnostic Tools to Define Endpoints for Programs to Eliminate Bancroftian Filariasis

    Get PDF
    Successful mass drug administration (MDA) campaigns have brought several countries near the point of Lymphatic Filariasis (LF) elimination. A diagnostic tool is needed to determine when the prevalence levels have decreased to a point that MDA campaigns can be discontinued without the threat of recrudescence. A six-country study was conducted assessing the performance of seven diagnostic tests, including tests for microfilariae (blood smear, PCR), parasite antigen (ICT, Og4C3) and antifilarial antibody (Bm14, PanLF, Urine SXP). One community survey and one school survey were performed in each country. A total of 8,513 people from the six countries participated in the study, 6,443 through community surveys and 2,070 through school surveys. Specimens from these participants were used to conduct 49,585 diagnostic tests. Each test was seen to have both positive and negative attributes, but overall, the ICT test was found to be 76% sensitive at detecting microfilaremia and 93% specific at identifying individuals negative for both microfilariae and antifilarial antibody; the Og4C3 test was 87% sensitive and 95% specific. We conclude, however, that the ICT should be the primary tool recommended for decision-making about stopping MDAs. As a point-of-care diagnostic, the ICT is relatively inexpensive, requires no laboratory equipment, has satisfactory sensitivity and specificity and can be processed in 10 minutes—qualities consistent with programmatic use. Og4C3 provides a satisfactory laboratory-based diagnostic alternative
    • …
    corecore