3,075 research outputs found
Pseudocercospora opuntiae sp. nov., the causal organism of cactus leaf spot in Mexico.
Pseudocercospora opuntiae is newly described from Opuntia spp. from Mexico, where it causes a serious disease of this host. Although P. opuntiae is morphologically similar to other members of the genus with pigmented conidia and conidiophores, and unthickened, not darkened conidiogenous scars, DNA sequence data of the ITS region revealed that it clusters distant from other species of Pseudocercospora within Mycosphaerella. These data support the assumption that Pseudocereospora is paraphyletic within Mycosphaerella
Higher twists and maxima for DIS on nuclei in high density QCD region
We show that the ratio of different structure functions have a maximum which
depends on and . We argue that these maxima are proportional to the
saturation scale. The analysis of leading and higher twist contributions for
different observables is given with the aim of determining the kinematic region
where high parton density effects could be seen experimentally.Comment: 16 pages of Latex file,8 figures in eps file
Recommended from our members
The mechanical hybrid vehicle: an investigation of a flywheel-based vehicular regenerative energy capture system
Capturing braking energy by regeneration into an onboard energy storage unit offers the potential to reduce significantly the fuel consumption of vehicles. A common technique is to generate electricity in the motors of a hybrid electric vehicle when braking, and to use this to charge an onboard electrochemical battery. However, such batteries are costly, bulky, and generally not amenable to fast charging as this affects battery life and capacity. In order to overcome these problems, a mechanical energy storage system capable of accepting and delivering surges of power is proposed and investigated. A scale physical model of the system, based around a flywheel, a planetary gear set, and a brake, was built and operated in a laboratory. Tests showed that the proposed system could be used to store and provide braking energy between a flywheel and a vehicle, the latter emulated by an air-drag dynamometer. This validated the operating principle of the system and its computational model. Further, a computational analysis of a full-size vehicle incorporating the mechanical energy storage system was conducted. The results showed that the utilization of this system in a vehicle, when compared with a conventional vehicle, led to reductions in emissions and fuel consumption
Small size boundary effects on two-pion interferometry
The Bose-Einstein correlations of two identically charged pions are derived
when these particles, the most abundantly produced in relativistic heavy ion
collisions, are confined in finite volumes. Boundary effects on single pion
spectrum are also studied. Numerical results emphasize that conventional
formulation usually adopted to describe two-pion interferometry should not be
used when the source size is small, since this is the most sensitive case to
boundary effects. Specific examples are considered for better illustration.Comment: more discussion on Figure4 and diffuse boundar
Size of Fireballs Created in High Energy Lead-Lead Collisions as Inferred from Coulomb Distortions of Pion Spectra
We compute the Coulomb effects produced by an expanding, highly charged
fireball on the momentum distribution of pions. We compare our results to data
on Au+Au at 11.6 A GeV from E866 at the BNL AGS and to data on Pb+Pb at 158 A
GeV from NA44 at the CERN SPS. We conclude that the distortion of the spectra
at low transverse momentum and mid-rapidity can be explained in both
experiments by the effect of the large amount of participating charge in the
central rapidity region. By adjusting the fireball expansion velocity to match
the average transverse momentum of protons, we find a best fit when the
fireball radius is about 10 fm, as determined by the moment when the pions
undergo their last scattering. This value is common to both the AGS and CERN
experiments.Comment: Enlarged discussion, new references added, includes new analysis of
pi-/pi+ at AGS energies. 12 pages 5 figures, uses LaTex and epsfi
Nominal Unification of Higher Order Expressions with Recursive Let
A sound and complete algorithm for nominal unification of higher-order
expressions with a recursive let is described, and shown to run in
non-deterministic polynomial time. We also explore specializations like nominal
letrec-matching for plain expressions and for DAGs and determine the complexity
of corresponding unification problems.Comment: Pre-proceedings paper presented at the 26th International Symposium
on Logic-Based Program Synthesis and Transformation (LOPSTR 2016), Edinburgh,
Scotland UK, 6-8 September 2016 (arXiv:1608.02534
Nanomaterials for Hydrogen Storage Applications: A Review
Nanomaterials have attracted great interest in recent years because of the unusual mechanical, electrical, electronic, optical, magnetic and surface properties. The high surface/volume ratio of these materials has significant implications with respect to energy storage. Both the high surface area and the opportunity for nanomaterial consolidation are key attributes of this new class of materials for hydrogen storage devices. Nanostructured systems including carbon nanotubes, nano-magnesium based hydrides, complex hydride/carbon nanocomposites, boron nitride nanotubes, TiS2/MoS2 nanotubes, alanates, polymer nanocomposites, and metal organic frameworks are considered to be potential candidates for storing large quantities of hydrogen. Recent investigations have shown that nanoscale materials may offer advantages if certain physical and chemical effects related to the nanoscale can be used efficiently. The present review focuses the application of nanostructured materials for storing atomic or molecular hydrogen. The synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides for improving the thermodynamics and hydrogen reaction kinetics are discussed. In addition, various carbonaceous nanomaterials and novel sorbent systems (e.g. carbon nanotubes, fullerenes, nanofibers, polyaniline nanospheres and metal organic frameworks etc.) and their hydrogen storage characteristics are outlined
Atomic Configuration of Nitrogen Doped Single-Walled Carbon Nanotubes
Having access to the chemical environment at the atomic level of a dopant in
a nanostructure is crucial for the understanding of its properties. We have
performed atomically-resolved electron energy-loss spectroscopy to detect
individual nitrogen dopants in single-walled carbon nanotubes and compared with
first principles calculations. We demonstrate that nitrogen doping occurs as
single atoms in different bonding configurations: graphitic-like and
pyrrolic-like substitutional nitrogen neighbouring local lattice distortion
such as Stone-Thrower-Wales defects. The stability under the electron beam of
these nanotubes has been studied in two extreme cases of nitrogen incorporation
content and configuration. These findings provide key information for the
applications of these nanostructures.Comment: 25 pages, 13 figure
- …