42 research outputs found

    CircumMed+Euro pine forest database: an electronic archive for Mediterranean and European forests

    Get PDF
    Large thematic databases of vegetation-plots are increasingly needed for vegetation studies and biodiversity research. In this paper, we present the CircumMed+Euro Pine Forest Database (GIVD ID: EU-00-026), which in September 2018 encompassed 5590 records from pine-dominated vegetation plots (relevés) and associated vegetation types from 23 countries of temperate Europe, Eastern Mediterranean and North Africa. These vegetation plots were collected through a detailed literature search for plots not included in the European Vegetation Archive (EVA). The database includes plots from 192 bibliographic references and unpublished vegetation plots by different authors. All vegetation plots are georeferenced, and coordinates are available with different accuracy as reported by the authors. The database is managed by the Vegetation Science Group, Department of Botany and Zoology of the Masaryk University in Brno (Czech Republic). It is registered in the Global Index of Vegetation-Plot Databases (GIVD) with the code EU-00-026 and is accessible through the European Vegetation Archive (EVA) or by asking the Custodian. The CircumMed+Euro Pine Forest Database is an important resource for conducting different types of broad-scale studies in the fields of vegetation classification, plant invasion ecology, macroecology and biological conservationN/

    Drivers of plant diversity in Bulgarian dry grasslands vary across spatial scales and functional-taxonomic groups

    Get PDF
    Questions: Studying dry grasslands in a previously unexplored region, we asked: (a) which environmental factors drive the diversity patterns in vegetation; (b) are taxonomic groups (vascular plants, bryophytes, lichens) and functional vascular plant groups differently affected; and (c) how is fine-grain beta diversity affected by environmental drivers? Location: Northwestern and Central Bulgaria. Methods: We sampled environmental data and vascular plant, terricolous bryophyte and lichen species in 97 10-m2 plots and 15 nested-plot series with seven grain sizes (0.0001–100 m2) of ten grassland sites within the two regions. We used species richness as measure of alpha-diversity and the z-value of the power-law species–area relationship as measure of beta-diversity. We analysed effects of landscape, topographic, soil and land-use variables on the species richness of the different taxonomic and functional groups. We applied generalised linear models (GLMs) or, in the presence of spatial autocorrelation, generalised linear mixed-effect models (GLMMs) in a multi-model inference framework. Results: The main factors affecting total and vascular plant species richness in 10-m2 plots were soil pH (unimodal) and inclination (negative). Species richness of bryophytes was positively affected by rock cover, sand proportion and negatively by inclination. Inclination and litter cover were also negative predictors of lichen species richness. Elevation negatively affected phanerophyte and therophyte richness, but positively that of cryptophytes. A major part of unexplained variance in species richness was associated with the grassland site. The z-values for total richness showed a positive relationship with elevation and inclination. Conclusions: Environmental factors shaping richness patterns strongly differed among taxonomic groups, functional vascular plant groups and spatial scales. The disparities between our and previous findings suggest that many drivers of biodiversity cannot be generalised but rather depend on the regional context. The large unexplained variance at the site level calls for considering more site-related factors such as land-use history

    Distribution maps of vegetation alliances in Europe

    Get PDF
    Aim The first comprehensive checklist of European phytosociological alliances, orders and classes (EuroVegChecklist) was published by Mucina et al. (2016, Applied Vegetation Science, 19 (Suppl. 1), 3–264). However, this checklist did not contain detailed information on the distribution of individual vegetation types. Here we provide the first maps of all alliances in Europe. Location Europe, Greenland, Canary Islands, Madeira, Azores, Cyprus and the Caucasus countries. Methods We collected data on the occurrence of phytosociological alliances in European countries and regions from literature and vegetation-plot databases. We interpreted and complemented these data using the expert knowledge of an international team of vegetation scientists and matched all the previously reported alliance names and concepts with those of the EuroVegChecklist. We then mapped the occurrence of the EuroVegChecklist alliances in 82 territorial units corresponding to countries, large islands, archipelagos and peninsulas. We subdivided the mainland parts of large or biogeographically heterogeneous countries based on the European biogeographical regions. Specialized alliances of coastal habitats were mapped only for the coastal section of each territorial unit. Results Distribution maps were prepared for 1,105 alliances of vascular-plant dominated vegetation reported in the EuroVegChecklist. For each territorial unit, three levels of occurrence probability were plotted on the maps: (a) verified occurrence; (b) uncertain occurrence; and (c) absence. The maps of individual alliances were complemented by summary maps of the number of alliances and the alliance–area relationship. Distribution data are also provided in a spreadsheet. Conclusions The new map series represents the first attempt to characterize the distribution of all vegetation types at the alliance level across Europe. There are still many knowledge gaps, partly due to a lack of data for some regions and partly due to uncertainties in the definition of some alliances. The maps presented here provide a basis for future research aimed at filling these gaps

    Distribution maps of vegetation alliances in Europe

    Get PDF
    Aim The first comprehensive checklist of European phytosociological alliances, orders and classes (EuroVegChecklist) was published by Mucina et al. (2016, Applied Vegetation Science, 19 (Suppl. 1), 3–264). However, this checklist did not contain detailed information on the distribution of individual vegetation types. Here we provide the first maps of all alliances in Europe. Location Europe, Greenland, Canary Islands, Madeira, Azores, Cyprus and the Caucasus countries. Methods We collected data on the occurrence of phytosociological alliances in European countries and regions from literature and vegetation-plot databases. We interpreted and complemented these data using the expert knowledge of an international team of vegetation scientists and matched all the previously reported alliance names and concepts with those of the EuroVegChecklist. We then mapped the occurrence of the EuroVegChecklist alliances in 82 territorial units corresponding to countries, large islands, archipelagos and peninsulas. We subdivided the mainland parts of large or biogeographically heterogeneous countries based on the European biogeographical regions. Specialized alliances of coastal habitats were mapped only for the coastal section of each territorial unit. Results Distribution maps were prepared for 1,105 alliances of vascular-plant dominated vegetation reported in the EuroVegChecklist. For each territorial unit, three levels of occurrence probability were plotted on the maps: (a) verified occurrence; (b) uncertain occurrence; and (c) absence. The maps of individual alliances were complemented by summary maps of the number of alliances and the alliance–area relationship. Distribution data are also provided in a spreadsheet. Conclusions The new map series represents the first attempt to characterize the distribution of all vegetation types at the alliance level across Europe. There are still many knowledge gaps, partly due to a lack of data for some regions and partly due to uncertainties in the definition of some alliances. The maps presented here provide a basis for future research aimed at filling these gaps

    European Red List of Habitats Part 2. Terrestrial and freshwater habitats

    Get PDF

    Distribution maps of vegetation alliances in Europe

    Get PDF
    Aim: The first comprehensive checklist of European phytosociological alliances, orders and classes (EuroVegChecklist) was published by Mucina et al. (2016, Applied Vegetation Science, 19 (Suppl. 1), 3–264). However, this checklist did not contain detailed information on the distribution of individual vegetation types. Here we provide the first maps of all alliances in Europe. Location: Europe, Greenland, Canary Islands, Madeira, Azores, Cyprus and the Caucasus countries. Methods: We collected data on the occurrence of phytosociological alliances in European countries and regions from literature and vegetation-plot databases. We interpreted and complemented these data using the expert knowledge of an international team of vegetation scientists and matched all the previously reported alliance names and concepts with those of the EuroVegChecklist. We then mapped the occurrence of the EuroVegChecklist alliances in 82 territorial units corresponding to countries, large islands, archipelagos and peninsulas. We subdivided the mainland parts of large or biogeographically heterogeneous countries based on the European biogeographical regions. Specialized alliances of coastal habitats were mapped only for the coastal section of each territorial unit. Results: Distribution maps were prepared for 1,105 alliances of vascular-plant dominated vegetation reported in the EuroVegChecklist. For each territorial unit, three levels of occurrence probability were plotted on the maps: (a) verified occurrence; (b) uncertain occurrence; and (c) absence. The maps of individual alliances were complemented by summary maps of the number of alliances and the alliance–area relationship. Distribution data are also provided in a spreadsheet. Conclusions: The new map series represents the first attempt to characterize the distribution of all vegetation types at the alliance level across Europe. There are still many knowledge gaps, partly due to a lack of data for some regions and partly due to uncertainties in the definition of some alliances. The maps presented here provide a basis for future research aimed at filling these gaps

    Ultramafic vegetation and soils in the circumboreal region of the Northern Hemisphere

    Full text link
    The paper summarizes literature on climate, soil chemistry, vegetation and metal accumulation by plants found on ultramafic substrata in the circumboreal zone (sensu Takhtajan, Floristic regions of the world, 1986) of the Northern Hemisphere. We present a list of 50 endemic species and 18 ecotypes obligate to ultramafic soils from the circumboreal region of Holarctic, as well as 30 and 2 species of Ni and Zn hyperaccumulators, respectively. The number of both endemics and hyperaccumulators are markedly lower compared to that of the Mediterranean and tropical regions. The diversity of plant communities on ultramafics soils of the circumboral region is also described. The underlying causes for the differences of ultramafic flora between arctic, cold, cool temperate and Mediterranean and tropical regions are also discussed. © 2018, The Ecological Society of Japan
    corecore