153 research outputs found

    James Croll and geological archives: testing astronomical theories of ice ages

    Get PDF
    James Croll's Physical Theory of Secular Changes of Climate emerged during an age of revolution in geology that included the rise of the glacial theory and the search for its underlying causes. According to Croll, periods of high eccentricity are associated with the persistence of long glacial epochs, within which glaciations occur in alternate hemispheres when winter is at aphelion every ~11,000 years; however, astronomical forcing is only able to produce glaciation by means of physical agencies (climate feedbacks) that amplify the small effects of varying seasonal irradiation. Croll understood the importance of interglacial deposits because they provided evidence for the occurrence of multiple glaciations within his long glacial epochs. He was aware of the limitations of the terrestrial record and suggested that deep-sea sediments would contain a continuous succession of glacial-interglacial cycles. Contrary to a widespread view, however, Croll was not envisaging the advent of palaeoceanographic exploration avant la lettre, but instead was drawing attention to the inadequacy of the land record as a testbed of his astronomical theory. Yet, the marine record did eventually deliver a test of astronomical theories almost exactly 100 years after the publication of his 1875 book Climate and Time in their Geological Relations. Here, we provide an historical account of the technological and scientific developments that led to this and a summary of insights on astronomically paced climate changes from marine, terrestrial and ice core records. We finally assess Croll's ideas in the context of our current understanding of the theory of ice ages

    Coupled ocean-land millennial-scale changes 1.26millionyears ago, recorded at Site U1385 off Portugal

    Get PDF
    While a growing body of evidence indicates that North Atlantic millennial-scale climate variability extends to the Early Pleistocene, its impact on terrestrial ecosystems has not been established. Here we present ultra-high resolution (70–140 year) joint foraminiferal isotopic and pollen analyses from IODP Site U1385 off Portugal, focusing on a short glacial section of Marine Isotope Stage 38, ~ 1.26 million years ago. Our records reveal the presence of millennial-scale variability in the coupled ocean–atmosphere-land system in the North Atlantic and provide the first direct evidence for the response of western Iberian vegetation to abrupt climate changes in the Early Pleistocene. The magnitude and pacing of changes bear significant similarities to Dansgaard-Oeschger variability of the Late/Middle Pleistocene.The work was funded by a Leverhulme Trust Research Project Grant (RPG2014-41) and a Natural Environment Research Council Grant (NE/K005804/1). This research used samples and data provided by the Integrated Ocean Drilling Program (IODP).This is the accepted manuscript. It first appeared at http://dx.doi.org/10.1016/j.gloplacha.2015.10.00

    Similar millennial climate variability on the Iberian margin during two early Pleistocene glacials and MIS 3

    Get PDF
    Although millennial-scale climate variability (<10 ka) has been well studied during the last glacial cycles, little is known about this important aspect of climate in the early Pleistocene, prior to the Middle Pleistocene Transition. Here we present an early Pleistocene climate record at centennial resolution for two representative glacials (marine isotope stages (MIS) 37–41 from approximately 1235 to 1320 ka) during the “41 ka world” at Integrated Ocean Drilling Program Site U1385 (the “Shackleton Site”) on the southwest Iberian margin. Millennial-scale climate variability was suppressed during interglacial periods (MIS 37, MIS 39, and MIS 41) and activated during glacial inceptions when benthic δ^18O exceeded 3.2‰. Millennial variability during glacials MIS 38 and MIS 40 closely resembled Dansgaard-Oeschger events from the last glacial (MIS 3) in amplitude, shape, and pacing. The phasing of oxygen and carbon isotope variability is consistent with an active oceanic thermal bipolar see-saw between the Northern and Southern Hemispheres during most of the prominent stadials. Surface cooling was associated with systematic decreases in benthic carbon isotopes, indicating concomitant changes in the meridional overturning circulation. A comparison to other North Atlantic records of ice rafting during the early Pleistocene suggests that freshwater forcing, a s proposed for the late Pleistocene, was involved in triggering or amplifying perturbations of the North Atlantic circulation that elicited a bipolar see-saw response. Our findings support similarities in the operation of the climate system occurring on millennial time scales before and after the Middle Pleistocene Transition despite the increases in global ice volume and duration of the glacial cycles.This work was made possible by a DAAD scholarship and NERC Grant NE/K005804/1.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/2015PA00286

    An ice–climate oscillatory framework for Dansgaard–Oeschger cycles

    Get PDF
    Intermediate glacial states were characterized by large temperature changes in Greenland and the North Atlantic, referred to as Dansgaard–Oeschger (D–O) variability, with some transitions occurring over a few decades. D–O variability included changes in the strength of the Atlantic meridional overturning circulation (AMOC), temperature changes of opposite sign and asynchronous timing in each hemisphere, shifts in the mean position of the Intertropical Convergence Zone and variations in atmospheric CO2. Palaeorecords and numerical studies indicate that the AMOC, with a tight coupling to Nordic Seas sea ice, is central to D–O variability, yet, a complete theory remains elusive. In this Review, we synthesize the climatic expression and processes proposed to explain D–O cyclicity. What emerges is an oscillatory framework of the AMOC–sea-ice system, arising through feedbacks involving the atmosphere, cryosphere and the Earth’s biogeochemical system. Palaeoclimate observations indicate that the AMOC might be more sensitive to perturbations than climate models currently suggest. Tighter constraints on AMOC stability are, thus, needed to project AMOC changes over the coming century as a response to anthropogenic carbon emissions. Progress can be achieved by additional observational constraints and numerical simulations performed with coupled climate–ice-sheet models

    Рестрикционное картирование внехромосомного элемента рСА25 Erwinia carotovora

    No full text
    Проведено фiзичне картування позахромосомного елемента рСА25 Erwinia carotovora i його транспозонного варiанта рСА25::Tn9. Плазмiда рСА25 належить до найбiльш поширеного серед ервiнiй розмiрного класу позахромосомних ДНК завдовжки 9,8 т. п. н. На основi отриманих даних побудовано попередню рестрикцiйну карту плазмiди i виявлено мiсце вбудовування транспозону Tn9 у плазмiдну ДНК.The restriction site mapping of Erwinia carotovora’s extrachromosomal element pCA25 and its transposon variant рСА25::Tn9 has been performed. Plasmid pCA25 belongs to the most widespread size class of erwinia’s extrachromosomal DNAs 9.8 kb. The preliminary restriction map of the plasmid has been created, and the site of the Tn9 transposon incorporation has been detected corresponding to the obtained data

    Glacial Inception in Marine Isotope Stage 19: An Orbital Analog for a Natural Holocene Climate

    Get PDF
    The Marine Isotope Stage 19c (MIS19c) interglaciation is regarded as the best orbital analog to the Holocene. The close of MIS19c (~777,000 years ago) thus serves as a proxy for a contemporary climate system unaffected by humans. Our global climate model simulation driven by orbital parameters and observed greenhouse gas concentrations at the end of MIS19c is 1.3 K colder than the reference pre-industrial climate of the late Holocene (year 1850). Much stronger cooling occurs in the Arctic, where sea ice and year-round snow cover expand considerably. Inferred regions of glaciation develop across northeastern Siberia, northwestern North America, and the Canadian Archipelago. These locations are consistent with evidence from past glacial inceptions and are favored by atmospheric circulation changes that reduce ablation of snow cover and increase accumulation of snowfall. Particularly large buildups of snow depth coincide with presumed glacial nucleation sites, including Baffin Island and the northeast Canadian Archipelago. These findings suggest that present-day climate would be susceptible to glacial inception if greenhouse gas concentrations were as low as they were at the end of MIS 19c

    Abrupt intrinsic and extrinsic responses of southwestern Iberian vegetation to millennial-scale variability over the past 28 ka

    Get PDF
    We present new high-resolution pollen records combined with palaeoceanographic proxies from the same samples in deep-sea cores SHAK06-5K and MD01-2444 on the southwestern Iberian Margin, documenting regional vegetation responses to orbital and millennial-scale climate changes over the last 28 ka. The chronology of these records is based on high-resolution radiocarbon dates of monospecific samples of the planktonic foraminifera Globigerina bulloides, measured from SHAK06-5K and MD01-2444 and aligned using an automated stratigraphical alignment method. Changes in temperate and steppe vegetation during Marine Isotope Stage 2 are closely coupled with sea surface temperature (SST) and global ice-volume changes. The peak expansion of thermophilous woodland between ~10.1 and 8.4 cal ka bp lags behind the boreal summer insolation maximum by ~2 ka, possibly arising from residual high-latitude ice-sheets into the Holocene. Rapid changes in pollen percentages are coeval with abrupt transitions in SSTs, precipitation and winter temperature at the onset and end of Heinrich Stadial 2, the ice-rafted debris event and end of Heinrich Stadial 1, and the onset of the Younger Dryas, suggesting extrinsically forced southwestern Iberian ecosystem changes by abrupt North Atlantic climate events. In contrast, the abrupt decline in thermophilous elements at ~7.8 cal ka bp indicates an intrinsically mediated abrupt vegetation response to the gradually declining boreal insolation, potentially resulting from the crossing of a seasonality of precipitation threshold

    A 1.5-million-year record of orbital and millennial climate variability in the North Atlantic

    Get PDF
    Climate during the last glacial period was marked by abrupt instability on millennial timescales that included large swings of temperature in and around Greenland (Daansgard-Oeschger events) and smaller, more gradual changes in Antarctica (AIM events). Less is known about the existence and nature of similar variability during older glacial periods, especially during the early Pleistocene when glacial cycles were dominantly occurring at 41 kyr intervals compared to the much longer and deeper glaciations of the more recent period. Here, we report a continuous millennially resolved record of stable isotopes of planktic and benthic foraminifera at IODP Site U1385 (the "Shackleton Site") from the southwestern Iberian margin for the last 1.5 million years, which includes the Middle Pleistocene Transition (MPT). Our results demonstrate that millennial climate variability (MCV) was a persistent feature of glacial climate, both before and after the MPT. Prior to 1.2 Ma in the early Pleistocene, the amplitude of MCV was modulated by the 41 kyr obliquity cycle and increased when axial tilt dropped below 23.5° and benthic δ18O exceeded ∼3.8 ‰ (corrected to Uvigerina), indicating a threshold response to orbital forcing. Afterwards, MCV became focused mainly on the transitions into and out of glacial states (i.e. inceptions and terminations) and during times of intermediate ice volume. After 1.2 Ma, obliquity continued to play a role in modulating the amplitude of MCV, especially during times of glacial inceptions, which are always associated with declining obliquity. A non-linear role for obliquity is also indicated by the appearance of multiples (82, 123 kyr) and combination tones (28 kyr) of the 41 kyr cycle. Near the end of the MPT (∼0.65 Ma), obliquity modulation of MCV amplitude wanes as quasi-periodic 100 kyr and precession power increase, coinciding with the growth of oversized ice sheets on North America and the appearance of Heinrich layers in North Atlantic sediments. Whereas the planktic δ18O of Site U1385 shows a strong resemblance to Greenland temperature and atmospheric methane (i.e. Northern Hemisphere climate), millennial changes in benthic δ18O closely follow the temperature history of Antarctica for the past 800 kyr. The phasing of millennial planktic and benthic δ18O variation is similar to that observed for MIS 3 throughout much of the record, which has been suggested to mimic the signature of the bipolar seesaw - i.e. an interhemispheric asymmetry between the timing of cooling in Antarctica and warming in Greenland. The Iberian margin isotopic record suggests that bipolar asymmetry was a robust feature of interhemispheric glacial climate variations for at least the past 1.5 Ma despite changing glacial boundary conditions. A strong correlation exists between millennial increases in planktic δ18O (cooling) and decreases in benthic δ13C, indicating that millennial variations in North Atlantic surface temperature are mirrored by changes in deep-water circulation and remineralization of carbon in the abyssal ocean. We find strong evidence that climate variability on millennial and orbital scales is coupled across different timescales and interacts in both directions, which may be important for linking internal climate dynamics and external astronomical forcing. Copyright

    Unraveling the forcings controlling the vegetation and climate of the best orbital analogues for the present interglacial in SW Europe

    Get PDF
    The suitability of MIS 11c and MIS 19c as analogues of our present interglacial and its natural evolution is still debated. Here we examine the regional expression of the Holocene and its orbital analogues over SW Iberia using a model-data comparison approach. Regional tree fraction and climate based on snapshot and transient experiments using the LOVECLIM model are evaluated against the terrestrial-marine profiles from Site U1385 documenting the regional vegetation and climatic changes. The pollen-based reconstructions show a larger forest optimum during the Holocene compared to MIS 11c and MIS 19c, putting into question their analogy in SW Europe. Pollen-based and model results indicate reduced MIS 11c forest cover compared to the Holocene primarily driven by lower winter precipitation, which is critical for Mediterranean forest development. Decreased precipitation was possibly induced by the amplified MIS 11c latitudinal insolation and temperature gradient that shifted the westerlies northwards. In contrast, the reconstructed lower forest optimum at MIS 19c is not reproduced by the simulations probably due to the lack of Eurasian ice sheets and its related feedbacks in the model. Transient experiments with time-varying insolation and CO2 reveal that the SW Iberian forest dynamics over the interglacials are mostly coupled to changes in winter precipitation mainly controlled by precession, CO2 playing a negligible role. Model simulations reproduce the observed persistent vegetation changes at millennial time scales in SW Iberia and the strong forest reductions marking the end of the interglacial "optimum".SFRH/BD/9079/2012, SFRH/BPD/108712/2015, SFRH/BPD/108600/2015info:eu-repo/semantics/publishedVersio

    Challenges and research priorities to understand interactions between climate, ice sheets and global mean sea level during past interglacials

    Get PDF
    Quaternary interglacials provide key observations of the Earth system's responses to orbital and greenhouse gas forcing. They also inform on the capabilities of Earth system models, used for projecting the polar ice-sheet and sea-level responses to a regional warmth comparable to that expected by 2100 C.E. However, a number of uncertainties remain regarding the processes and feedbacks linking climate, ice-sheet and sea-level changes during past warm intervals. Here, we delineate the major research questions that need to be resolved and future research directions that should be taken by the paleoclimate, sea-level and ice-sheet research communities in order to increase confidence in the use of past interglacial climate, ice-sheet and sea-level reconstructions to constrain future predictions. These questions were formulated during a joint workshop held by the PAGES-INQUA PALSEA (PALeo constraints on SEA level rise) and the PAGES-PMIP QUIGS (QUaternary InterGlacialS) Working Groups in September 2018.PAGE
    corecore