13 research outputs found

    Combining ground-based microwave radiometer and the AROME convective scale model through 1DVAR retrievals in complex terrain: an Alpine valley case study

    Get PDF
    Abstract. A RPG-HATPRO ground-based microwave radiometer (MWR) was operated in a deep Alpine valley during the Passy-2015 field campaign. This experiment aims to investigate how stable boundary layers during wintertime conditions drive the accumulation of pollutants. In order to understand the atmospheric processes in the valley, MWRs continuously provide vertical profiles of temperature and humidity at a high time frequency, providing valuable information to follow the evolution of the boundary layer. A one-dimensional variational (1DVAR) retrieval technique has been implemented during the field campaign to optimally combine an MWR and 1 h forecasts from the French convective scale model AROME. Retrievals were compared to radiosonde data launched at least every 3 h during two intensive observation periods (IOPs). An analysis of the AROME forecast errors during the IOPs has shown a large underestimation of the surface cooling during the strongest stable episode. MWR brightness temperatures were monitored against simulations from the radiative transfer model ARTS2 (Atmospheric Radiative Transfer Simulator) and radiosonde launched during the field campaign. Large errors were observed for most transparent channels (i.e., 51–52 GHz) affected by absorption model and calibration uncertainties while a good agreement was found for opaque channels (i.e., 54–58 GHz). Based on this monitoring, a bias correction of raw brightness temperature measurements was applied before the 1DVAR retrievals. 1DVAR retrievals were found to significantly improve the AROME forecasts up to 3 km but mainly below 1 km and to outperform usual statistical regressions above 1 km. With the present implementation, a root-mean-square error (RMSE) of 1 K through all the atmospheric profile was obtained with values within 0.5 K below 500 m in clear-sky conditions. The use of lower elevation angles (up to 5°) in the MWR scanning and the bias correction were found to improve the retrievals below 1000 m. MWR retrievals were found to catch deep near-surface temperature inversions very well. Larger errors were observed in cloudy conditions due to the difficulty of ground-based MWRs to resolve high level inversions that are still challenging. Finally, 1DVAR retrievals were optimized for the analysis of the IOPs by using radiosondes as backgrounds in the 1DVAR algorithm instead of the AROME forecasts. A significant improvement of the retrievals in cloudy conditions and below 1000 m in clear-sky conditions was observed. From this study, we can conclude that MWRs are expected to bring valuable information into numerical weather prediction models up to 3 km in altitude both in clear-sky and cloudy-sky conditions with the maximum improvement found around 500 m. With an accuracy between 0.5 and 1 K in RMSE, our study has also proven that MWRs are capable of resolving deep near-surface temperature inversions observed in complex terrain during highly stable boundary layer conditions

    Valley heat deficit as a bulk measure of wintertime particulate air pollution in the Arve River Valley

    Get PDF
    © 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Urbanized valleys are particularly vulnerable to particulate air pollution during the winter, when ground-based stable layers or cold-air pools persist over the valley floor. We examine whether the temporal variability of PM10 concentration in the section of the Arve River Valley between Cluses and Servoz in the French Alps can be explained by the temporal variability of the valley heat deficit, a bulk measure of atmospheric stability within the valley. We do this on the basis of temperature profile and ground-based PM10 concentration data collected during wintertime with a temporal resolution of one hour or finer, as part of the Passy-2015 field campaign conducted around Passy in this section of valley. The valley heat deficit was highly correlated with PM10 concentration on a daily time scale. The hourly variability of PM10 concentrations was more complex and cannot be explained solely by the hourly variability of the valley heat deficit. The interplay of the diurnal cycles of emissions and local dynamics is demonstrated and a drainage mechanism for observed nocturnal dilution of near-surface PM10 concentrations is proposed.Peer reviewe

    The BLLAST field experiment: Boundary-Layer late afternoon and sunset turbulence

    Get PDF
    Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary layer, still has a number of unanswered scientific questions. This phase of the diurnal cycle is challenging from both modelling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of instrumented platforms including full-size aircraft, remotely piloted aircraft systems, remote-sensing instruments, radiosoundings, tethered balloons, surface flux stations and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observation periods that were conducted from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, such as new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary-layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the previous day's residual layer, as well as local, meso- or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and documented the evolution of the turbulence characteristic length scales during the transition period. Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations.publishedVersio

    High-frequency boundary layer profiling with reusable radiosondes

    No full text
    International audienceA new system for high-frequency boundary layer profiling based upon radiosondes and free balloons was tested during the field phases of the Boundary Layer Late Afternoon and Sunset Turbulence experiment (BLLAST 2011, Lannemezan, France) and of the Hydrological cycle in the Mediterranean Experiment (HyMeX, 2012). The system consists of a conventional Vaisala receiver and a GPS radiosonde (pressure, wind, humidity and temperature), that is tied to a couple of inflated balloons. The principle of the sounding system is to permit the first balloon to detach from the rawinsonde at a predetermined altitude, allowing for the rawinsonde to slowly descend with the second balloon to perform a second, new sounding. The instrumentation is then eventually recovered. The expecting landing area is anticipated before the flight by estimating the trajectory of the probe from a forecasted wind profile and by specifying both the balloon release altitude and the mean ascent and descent rates of the system. The real landing point is determined by the last transmission of the radiosonde GPS and the visual landmark provided by the second balloon. Seventy-two soundings were performed during BLLAST (62) and HyMeX (10), with a recovery rate of more than 80% during the BLLAST field campaign. Recovered radiosondes were generally reused several times, often immediately after recovery, which definitely demonstrates the high potential of this system

    Atmospheric Measurements by Ultra-Light SpEctrometer (AMULSE) Dedicated to Vertical Profile in Situ Measurements of Carbon Dioxide (CO2) Under Weather Balloons: Instrumental Development and Field Application

    No full text
    The concentration of greenhouse gases in the atmosphere plays an important role in the radiative effects in the Earth’s climate system. Therefore, it is crucial to increase the number of atmospheric observations in order to quantify the natural sinks and emission sources. We report in this paper the development of a new compact lightweight spectrometer (1.8 kg) called AMULSE based on near infrared laser technology at 2.04 µm coupled to a 6-m open-path multipass cell. The measurements were made using the Wavelength Modulation Spectroscopy (WMS) technique and the spectrometer is hence dedicated to in situ measuring the vertical profiles of the CO2 at high precision levels (σAllan = 0.96 ppm in 1 s integration time (1σ)) and with high temporal/spatial resolution (1 Hz/5 m) using meteorological balloons. The instrument is compact, robust, cost-effective, fully autonomous, has low-power consumption, a non-intrusive probe and is plug & play. It was first calibrated and validated in the laboratory and then used for 17 successful flights up to 10 km altitude in the region Champagne—Ardenne, France in 2014. A rate of 100% of instrument recovery was validated due to the pre-localization prediction of the Météo—France based on the flight simulation software

    Remote sensing of water vapour from the synergy of Raman lidar, GPS and in-situ observations during the DEMEVAP 2011 campaign

    No full text
    The DEMEVAP (DEvelopment of MEthods for remote sensing of water VAPor) project aims at developing improved reference humidity sounding methods based on the combined used of scanning Raman lidars, groundbased sensors and GPS. The goal is to achieve absolute accuracy better than 3% on the column integrated water vapour (IWV). An intensive observing period was conducted in September-October 2011 at Observatoire de Haute Provence (OHP), France, with the aim of intercomparing several different techniques and instruments. It involved two Raman lidars, four radiosonde measurement systems, five GPS stations, a stellar spectrometer, and several ground-based capacitive and dew-point sensors. Observations were collected over 17 nights during which 26 balloons were released which carried a total of 79 radiosondes. Most of the balloons carried 3 or 4 different sonde types simultaneously (Vaisala RS92, MODEM M2K2-DC and M10, and Meteolabor Snow-White). The comparison of IWV measurements from the four radiosonde types to GPS reveals biases of -11% to +7%. Comparison of water vapour profiles from the radiosondes to the IGN scanning Raman lidar profiles reveals mostly dry and wet biases in the radiosondes data in dry layers in the middle and upper troposphere. Several Raman lidar calibration methods are evaluated which adjust the lidar measurements either on ground-based capacitive or dew-point sensors measurements, on radiosonde data or on GPS PWV data. Another method adjusts the lidar calibration constant as an extra parameter during GPS processing. All these methods show a good degree of consistency and yield a repeatability of 2 to 5% during the first 3-week period of the experiment. A drift in the calibration constant is observed throughout the full time of the experiment which is partly explained by a temperature-dependent bias in the lidar measurements induced by the progressive cooling of the atmosphere. Modelling and correcting this effect or modifying the Raman lidar detection system should allow achieving a 3% level of accuracy into the long term and make the Raman lidar technique suitable to detect biases or to calibrate data from other techniques (e.g., radiosondes, visible spectrometers and microwave radiometers)

    The Global Land Carbon Cycle Simulated With ISBA‐CTRIP: Improvements Over the Last Decade

    No full text
    International audienceWe present the latest version of the ISBA‐CTRIP land surface system, focusing on the representation of the land carbon cycle. We review the main improvements since the year 2012, mainly added modules for wild fires, carbon leaching through soil and transport of dissolved organic carbon to the ocean, and land cover changes but also improved representation of photosynthesis, respiration, and plant functional types. This version of ISBA‐CTRIP is fully described in terms of land carbon pools, fluxes, and their interactions. Results are compared with the previous version in an off‐line mode forced by observed climate during the historical time period. The two simulations are presented to demonstrate the model performance compared to an ensemble of observed and observation‐derived data sets for gross and net primary productivity, heterotrophic and autotrophic respiration, above and below ground biomass, litter, and soil carbon pools. New developments specific to the new version such as burned area, fire emissions, carbon leaching, and land cover are also validated against observations. The results show clearly that the latest version of ISBA‐CTRIP outperforms the former version and reproduces generally well the observed mean spatial patterns in carbon pools and fluxes, as well as the seasonal cycle of leaf area index. The trends of the global fluxes over the last 50 years agree with other global models and with available estimates. This comparison gives us confidence that the model represents the main processes involved in the terrestrial carbon cycle and can be used to explore future global change projections

    Accuracy assessment of water vapour measurements from in-situ and remote sensing techniques during the DEMEVAP 2011 campaign

    No full text
    International audienceThe Development of Methodologies for Water Vapour Measurement (DEMEVAP) project aims at assessing and improving humidity sounding techniques and establishing a reference system based on the combination of Raman lidars, ground-based sensors and GPS. Such a system may be used for climate monitoring, radiosonde bias detection and correction, satellite measurement calibration/validation, and mm-level geodetic positioning with Global Navigation Satellite Systems. A field experiment was conducted in September-October 2011 at Observatoire de Haute Provence (OHP). Two Raman lidars (IGN mobile lidar and OHP NDACC lidar), a stellar spectrometer (SOPHIE), a differential absorption spectrometer (SAOZ), a sun photometer (AERONET), 5 GPS receivers and 4 types of radiosondes (Vaisala RS92, MODEM M2K2-DC and M10, and Meteolabor Snow-White) participated in the campaign. A total of 26 balloons with multiple radiosondes were flown during 16 clear nights. This paper presents preliminary findings from the analysis of all these datasets. Several classical Raman lidar calibration methods are evaluated which use either Vaisala RS92 measurements, point capacitive humidity measurements, or GPS integrated water vapour (IWV) measurements. A novel method proposed by Bosser et al. (2010) is also tested. It consists in calibrating the lidar measurements during the GPS data processing. The methods achieve a repeatability of 4-5 %. Changes in calibration factor of IGN Raman lidar are evidenced which are attributed to frequent optical re-alignments. When modelling and correcting the changes as a linear function of time, the precision of the calibration factors improves to 2-3 %. However, the variations in the calibration factor, and hence the absolute accuracy, between methods and types of reference data remain at the level of 7 %. The intercomparison of radiosonde measurements shows good agreement between RS92 and Snow-White measurements up to 12 km. An overall dry bias is found in the measurements from both MODEM radiosondes. Investigation of situations with low RH values (< 10 %RH) in the lower and middle troposphere reveals, on occasion, a lower RH detection limit in the Snow-White measurements compared to RS92 due to a saturation of the Peltier device. However, on other occasions, a dry bias is found in RS92, instead. On average, both RS92 and Snow-White measurements show a slight moist bias at night-time compared to GPS IWV, while the MODEM measurements show a large dry bias. The IWV measurements from SOPHIE (night-time) and SAOZ (daytime) spectrometers, AERONET photometer (daytime) and calibrated Raman lidar (night-time) showed excellent agreement with the GPS IWV measurements

    The development of the Atmospheric Measurements by Ultra-Light Spectrometer (AMULSE) greenhouse gas profiling system and application for satellite retrieval validation

    No full text
    International audienceWe report in this paper the development of an embedded ultralight spectrometer (<3 kg) based on tuneable diode laser absorption spectroscopy (with a sampling rate of 24 Hz) in the mid-infrared spectral region. This instrument is dedicated to in situ measurements of the vertical profile concentrations of three main greenhouse gases – carbon dioxide (CO2), methane (CH4) and water vapour (H2O) – via standard weather and tethered balloons. The plug and play instrument is compact, robust, cost-effective, and autonomous. The instrument also has low power consumption and is non-intrusive.It was first calibrated during an in situ experiment on an ICOS (Integrated Carbon Observation System) site for several days, then used in two experiments with several balloon flights of up to 30 km altitude in the Reims region of France in 2017–2018 in collaboration with Météo-France CNRM (Centre National de Recherches Météorologiques).This paper shows the valuable interest of the data measured by the AMULSE (Atmospheric Measurements by Ultra-Light Spectrometer) instrument during the APOGEE (Atmospheric Profiles of Greenhouse Gases) measurement experiment, specifically for the vertical profiles of CO2 and CH4, measurements of which remain very sparse. We have carried out several experiments showing that the measured profiles have several applications: the validation of simulations of infrared satellite observations, evaluating the quality of chemical profiles from chemistry transport models (CTMs) and evaluating the quality of retrieved chemical profiles from the assimilation of infrared satellite observations. The results show that the simulations of infrared satellite observations from IASI (Infrared Atmospheric Sounding Interferometer) and CrIS (Cross-track Infrared Sounder) instruments performed in operational mode for numerical weather prediction (NWP) by the radiative transfer model (RTM) RTTOV (Radiative Transfer for the TIROS Operational Vertical Sounder) are of good quality. We also show that the MOCAGE (Modèle de Chimie Atmosphérique de Grande Echelle) and CAMS (Copernicus Atmospheric Monitoring Service) CTMs modelled ozone profiles fairly accurately and that the CAMS CTM represents the methane in the troposphere well compared to MOCAGE. Finally, the measured in situ ozone profiles allowed us to show the good quality of the retrieved ozone profiles by assimilating ozone-sensitive infrared spectral radiances from the IASI and CrIS
    corecore