608 research outputs found

    Preliminary catalog of pictures taken on the lunar surface during the Apollo 16 mission

    Get PDF
    A catalog of all pictures taken from the lunar module or the lunar surface during the Apollo 16 lunar stay is presented. The tabulations are arranged for the following specific uses: (1) given the number of a particular frame, find its location in the sequence of lunar surface activity, the station from which it was taken and the subject matter of the picture; (2) given a particular location or activity within the sequence of lunar surface activity, find the pictures taken at that time and their subject matter; and (3) given a sample number from the voice transcript listed, find the designation assigned to the same sample by the lunar receiving laboratory

    Kinase profiling of liposarcomas using RNAi and drug screening assays identified druggable targets.

    Get PDF
    BackgroundLiposarcoma, the most common soft tissue tumor, is understudied cancer, and limited progress has been made in the treatment of metastatic disease. The Achilles heel of cancer often is their kinases that are excellent therapeutic targets. However, very limited knowledge exists of therapeutic critical kinase targets in liposarcoma that could be potentially used in disease management.MethodsLarge RNAi and small-molecule tyrosine kinase inhibitor screens were performed against the proliferative capacity of liposarcoma cell lines of different subtypes. Each small molecule inhibitor was either FDA approved or in a clinical trial.ResultsScreening assays identified several previously unrecognized targets including PTK2 and KIT in liposarcoma. We also observed that ponatinib, multi-targeted tyrosine kinase inhibitor, was the most effective drug with anti-growth effects against all cell lines. In vitro assays showed that ponatinib inhibited the clonogenic proliferation of liposarcoma, and this anti-growth effect was associated with apoptosis and cell cycle arrest at the G0/G1 phase as well as a decrease in the KIT signaling pathway. In addition, ponatinib inhibited in vivo growth of liposarcoma in a xenograft model.ConclusionsTwo large-scale kinase screenings identified novel liposarcoma targets and a FDA-approved inhibitor, ponatinib with clear anti-liposarcoma activity highlighting its potential therapy for treatment of this deadly tumor

    Preliminary catalog of pictures taken on the lunar surface during the Apollo 15 mission

    Get PDF
    Catalog of all pictures taken from lunar module or lunar surface during Apollo 15 missio

    GIVE: portable genome browsers for personal websites.

    Get PDF
    Growing popularity and diversity of genomic data demand portable and versatile genome browsers. Here, we present an open source programming library called GIVE that facilitates the creation of personalized genome browsers without requiring a system administrator. By inserting HTML tags, one can add to a personal webpage interactive visualization of multiple types of genomics data, including genome annotation, "linear" quantitative data, and genome interaction data. GIVE includes a graphical interface called HUG (HTML Universal Generator) that automatically generates HTML code for displaying user chosen data, which can be copy-pasted into user's personal website or saved and shared with collaborators. GIVE is available at: https://www.givengine.org/

    UNC2025, a MERTK Small-Molecule Inhibitor, Is Therapeutically Effective Alone and in Combination with Methotrexate in Leukemia Models

    Get PDF
    MERTK tyrosine kinase is ectopically expressed in 30–50% of acute lymphoblastic leukemias (ALL) and over 80% of acute myeloid leukemias (AML) and is a potential therapeutic target. Here, we evaluated the utility of UNC2025, a MERTK tyrosine kinase inhibitor, for treatment of acute leukemia

    Coulomb Interactions between Cytoplasmic Electric Fields and Phosphorylated Messenger Proteins Optimize Information Flow in Cells

    Get PDF
    Normal cell function requires timely and accurate transmission of information from receptors on the cell membrane (CM) to the nucleus. Movement of messenger proteins in the cytoplasm is thought to be dependent on random walk. However, Brownian motion will disperse messenger proteins throughout the cytosol resulting in slow and highly variable transit times. We propose that a critical component of information transfer is an intracellular electric field generated by distribution of charge on the nuclear membrane (NM). While the latter has been demonstrated experimentally for decades, the role of the consequent electric field has been assumed to be minimal due to a Debye length of about 1 nanometer that results from screening by intracellular Cl- and K+. We propose inclusion of these inorganic ions in the Debye-Huckel equation is incorrect because nuclear pores allow transit through the membrane at a rate far faster than the time to thermodynamic equilibrium. In our model, only the charged, mobile messenger proteins contribute to the Debye length.Using this revised model and published data, we estimate the NM possesses a Debye-Huckel length of a few microns and find this is consistent with recent measurement using intracellular nano-voltmeters. We demonstrate the field will accelerate isolated messenger proteins toward the nucleus through Coulomb interactions with negative charges added by phosphorylation. We calculate transit times as short as 0.01 sec. When large numbers of phosphorylated messenger proteins are generated by increasing concentrations of extracellular ligands, we demonstrate they generate a self-screening environment that regionally attenuates the cytoplasmic field, slowing movement but permitting greater cross talk among pathways. Preliminary experimental results with phosphorylated RAF are consistent with model predictions.This work demonstrates that previously unrecognized Coulomb interactions between phosphorylated messenger proteins and intracellular electric fields will optimize information transfer from the CM to the NM in cells

    The prognostic value of p53 mutation in pediatric marrow hypoplasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tumor suppressor gene p53 is involved in the control of cell proliferation, particularly in stressed cells. p 53 gene mutations are the most frequent genetic event found in human cancers. Fanconi Anemia (FA) is the most common representative of inherited bone marrow failure syndromes (IBMFS) with a leukemic propensity. P 53 DNA alteration has not been studied before in Egyptian children with FA.</p> <p>Patients and methods</p> <p>we investigated p53 mutation in the bone marrow and peripheral blood of forty children, FA (n = 10), acquired aplastic anemia (AAA) (n = 10), and immune thrombocytopenia (ITP) as a control (n = 20), using real-time PCR by TaqMan probe assay</p> <p>Results</p> <p>Mutation of p53 gene was demonstrated in the BM of 90% (9/10) of children with FA, compared to 10% (1/10) in AAA (p < 0.001), while, no p53 DNA mutation was seen in the control group. A positive correlation between DNA breakage and presence of p53 mutation was seen in FA (p < 0.02, r0.81).</p> <p>Conclusion</p> <p>mutation of p53 gene in hypoplastic marrow especially FA may represent an early indicator of significant DNA genetic alteration with cancer propensity.</p

    Δ40 Isoform of p53 Controls β-Cell Proliferation and Glucose Homeostasis in Mice

    Get PDF
    Objective: Investigating the dynamics of pancreatic β\beta-cell mass is critical for developing strategies to treat both type 1 and type 2 diabetes. p53, a key regulator of the cell cycle and apoptosis, has mostly been a focus of investigation as a tumor suppressor. Although p53 alternative transcripts can modulate p53 activity, their functions are not fully understood. We hypothesized that β\beta-cell proliferation and glucose homeostasis were controlled by Δ\Delta40p53, a p53 isoform lacking the transactivation domain of the full-length protein that modulates total p53 activity and regulates organ size and life span in mice. Research Design and Methods: We phenotyped metabolic parameters in Δ\Delta40p53 transgenic (p44tg) mice and used quantitative RT-PCR, Western blotting, and immunohistochemistry to examine β\beta-cell proliferation. Results: Transgenic mice with an ectopic p53 gene encoding Δ\Delta40p53 developed hypoinsulinemia and glucose intolerance by 3 months of age, which worsened in older mice and led to overt diabetes and premature death from \sim14 months of age. Consistent with a dramatic decrease in β\beta-cell mass and reduced β\beta-cell proliferation, lower expression of cyclin D2 and pancreatic duodenal homeobox-1, two key regulators of proliferation, was observed, whereas expression of the cell cycle inhibitor p21, a p53 target gene, was increased. Conclusions: These data indicate a significant and novel role for Δ\Delta40p53 in β\beta-cell proliferation with implications for the development of age-dependent diabetes
    corecore