257 research outputs found

    The sub-millimetre evolution of V4334 Sgr (Sakurai's Object)

    Full text link
    We report the results of monitoring of V4334 Sgr (Sakurai's Object) at 450 microns and 850 microns with SCUBA on the James Clerk Maxwell Telescope. The flux density at both wavelengths has increased dramatically since 2001, and is consistent with continued cooling of the dust shell in which Sakurai's Object is still enshrouded, and which still dominates the near-infrared emission. Assuming that the dust shell is optically thin at sub-millimetre wavelengths and optically thick in the near-infrared, the sub-millimetre data imply a mass-loss rate during 2003 of ~3.4(+/0.2)E-5 for a gas-to-dust ratio of 75. This is consistent with the evidence from 1-5micron observations that the mass-loss is steadily increasing.Comment: 5 pages, 4 eps figures, accepted for publication in MNRA

    Sakurai's Object: characterizing the near-infrared CO ejecta between 2003 and 2007

    Get PDF
    We present observations of Sakurai's Object obtained at 1–5 μm between 2003 and 2007. By fitting a radiative transfer model to an echelle spectrum of CO fundamental absorption features around 4.7 μm, we determine the excitation conditions in the line-forming region. We find 12C/13C = 3.5+2.0−1.5, consistent with CO originating in ejecta processed by the very late thermal pulse, rather than in the pre-existing planetary nebula. We demonstrate the existence of 2.2 × 10−6≤MCO≤ 2.7 × 10−6 M⊙ of CO ejecta outside the dust, forming a high-velocity wind of 500 ± 80 km s−1. We find evidence for significant weakening of the CO band and cooling of the dust around the central star between 2003 and 2005. The gas and dust temperatures are implausibly high for stellar radiation to be the sole contributor

    Sex-specific patterns in demography of bottlenose dolphins in coastal and estuarine waters

    Get PDF
    Inherent difficulties in determining the sex of free-ranging, sexually monomorphic species (where both sexes look the same) often prevents a sex-specific approach to their study. However, accounting for sex-differences in population parameters can have important conservation and management implications, as one sex may be more susceptible to threats than the other

    Infrared spectroscopy of Nova Cassiopeiae 1993 (V705 Cas). IV. A closer look at the dust

    Full text link
    Nova Cassiopeiae 1993 (V705 Cas) was an archetypical dust-forming nova. It displayed a deep minimum in the visual light curve, and spectroscopic evidence for carbon, hydrocarbon and silicate dust. We report the results of fitting the infrared spectral energy distribution with the DUSTY code, which we use to determine the properties and geometry of the emitting dust. The emission is well described as originating in a thin shell whose dust has a carbon:silicate ratio of ~2:1 by number (1.26:1 by mass) and a relatively flat size distribution. The 9.7micron and 18micron silicate features are consistent with freshly-condensed dust and, while the lower limit to the grain size distribution is not well constrained, the largest grains have dimensions \~0.06micron; unless the grains in V705 Cas were anomalously small, the sizes of grains produced in nova eruptions may previously have been overestimated in novae with optically thick dust shells. Laboratory work by Grishko & Duley may provide clues to the apparently unique nature of nova UIR features.Comment: 11 pages, 9 fugure

    Basin architecture controls on the chemical evolution and 4He distribution of groundwater in the Paradox Basin

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tyne, R., Barry, P., Cheng, A., Hillegonds, D., Kim, J.-H., McIntosh, J., & Ballentine, C. Basin architecture controls on the chemical evolution and 4He distribution of groundwater in the Paradox Basin. Earth and Planetary Science Letters, 589, (2022):117580, https://doi.org/10.1016/j.epsl.2022.117580.Fluids such as 4He, H2, CO2 and hydrocarbons accumulate within Earth's crust. Crustal reservoirs also have potential to store anthropogenic waste (e.g., CO2, spent nuclear fuel). Understanding fluid migration and how this is impacted by basin stratigraphy and evolution is key to exploiting fluid accumulations and identifying viable storage sites. Noble gases are powerful tracers of fluid migration and chemical evolution, as they are inert and only fractionate by physical processes. The distribution of 4He, in particular, is an important tool for understanding diffusion within basins and for groundwater dating. Here, we report noble gas isotope and abundance data from 36 wells across the Paradox Basin, Colorado Plateau, USA, which has abundant hydrocarbon, 4He and CO2 accumulations. Both groundwater and hydrocarbon samples were collected from 7 stratigraphic units, including within, above and below the Paradox Formation (P.Fm) evaporites. Air-corrected helium isotope ratios (0.0046 - 0.127 RA) are consistent with radiogenic overprinting of predominantly groundwater-derived noble gases. The highest radiogenic noble gas concentrations are found in formations below the P.Fm. Atmosphere-derived noble gas signatures are consistent with meteoric recharge and multi-phase interactions both above and below the P.Fm, with greater groundwater-gas interactions in the shallower formations. Vertical diffusion models, used to reconstruct observed groundwater helium concentrations, show the P.Fm evaporite layer to be effectively impermeable to helium diffusion and a regional barrier for mobile elements but, similar to other basins, a basement 4He flux is required to accumulate the 4He concentrations observed beneath the P.Fm. The verification that evaporites are regionally impermeable to diffusion, of even the most diffusive elements, is important for sub-salt helium and hydrogen exploration and storage, and a critical parameter in determining 4He-derived mean groundwater ages. This is critical to understanding the role of basin stratigraphy and deformation on fluid flow and gas accumulation.This work was supported by a Natural Environment Research Council studentship to R.L. Tyne (Grant ref. NE/L002612/1). We gratefully acknowledge the William F. Keck Foundation for support of this research, and the National Science Foundation (NSF EAR #2120733). J.C. McIntosh and C.J. Ballentine are fellows of the CIFAR Earth4D Subsurface Science and Exploration Program. The authors would like to acknowledge the U.S. Bureau of Reclamation, Paradox Resources, Navajo Petroleum, US Oil and Gas INC, Anson Resources, Lantz Indergard (Lisbon Valley Mining Co.), Ambria Dell'Oro and Mohammad Marza for help with sampling

    Investigating the effect of enhanced oil recovery on the noble gas signature of casing gases and produced waters from selected California oil fields

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tyne, R. L., Barry, P. H., Karolyte, R., Byrne, D. J., Kulongoski, J. T., Hillegonds, D. J., & Ballentine, C. J. Investigating the effect of enhanced oil recovery on the noble gas signature of casing gases and produced waters from selected California oil fields. Chemical Geology, 584, (2021): 120540. https://doi.org/10.1016/j.chemgeo.2021.120540.In regions where water resources are scarce and in high demand, it is important to safeguard against contamination of groundwater aquifers by oil-field fluids (water, gas, oil). In this context, the geochemical characterisation of these fluids is critical so that anthropogenic contaminants can be readily identified. The first step is characterising pre-development geochemical fluid signatures (i.e., those unmodified by hydrocarbon resource development) and understanding how these signatures may have been perturbed by resource production, particularly in the context of enhanced oil recovery (EOR) techniques. Here, we present noble gas isotope data in fluids produced from oil wells in several water-stressed regions in California, USA, where EOR is prevalent. In oil-field systems, only casing gases are typically collected and measured for their noble gas compositions, even when oil and/or water phases are present, due to the relative ease of gas analyses. However, this approach relies on a number of assumptions (e.g., equilibrium between phases, water-to-oil ratio (WOR) and gas-to-oil ratio (GOR) in order to reconstruct the multiphase subsurface compositions. Here, we adopt a novel, more rigorous approach, and measure noble gases in both casing gas and produced fluid (oil-water-gas mixtures) samples from the Lost Hills, Fruitvale, North and South Belridge (San Joaquin Basin, SJB) and Orcutt (Santa Maria Basin) Oil Fields. Using this method, we are able to fully characterise the distribution of noble gases within a multiphase hydrocarbon system. We find that measured concentrations in the casing gases agree with those in the gas phase in the produced fluids and thus the two sample types can be used essentially interchangeably. EOR signatures can readily be identified by their distinct air-derived noble gas elemental ratios (e.g., 20Ne/36Ar), which are elevated compared to pre-development oil-field fluids, and conspicuously trend towards air values with respect to elemental ratios and overall concentrations. We reconstruct reservoir 20Ne/36Ar values using both casing gas and produced fluids and show that noble gas ratios in the reservoir are strongly correlated (r2 = 0.88–0.98) to the amount of water injected within ~500 m of a well. We suggest that the 20Ne/36Ar increase resulting from injection is sensitive to the volume of fluid interacting with the injectate, the effective water-to-oil ratio, and the composition of the injectate. Defining both the pre-development and injection-modified hydrocarbon reservoir compositions are crucial for distinguishing the sources of hydrocarbons observed in proximal groundwaters, and for quantifying the transport mechanisms controlling this occurrence.This work was supported by a Natural Environment Research Council studentship to R.L.Tyne (Grant ref. NE/L002612/1) and the U.S. Geological Survey (Grant ref. 15-080-250), as part of the California State Water Resource Control Board's Oil and Gas Regional Groundwater Monitoring Program (RMP)

    Asteroseismological constraints on the pulsating planetary nebula nucleus (PG1159-type) RX J2117.1+3412

    Get PDF
    We present asteroseismological inferences on RX J2117.1+3412, the hottest known pulsating PG1159 star. Our results are based on full PG1159 evolutionary models recently presented by Miller Bertolami & Althaus (2006). We performed extensive computations of adiabatic g-mode pulsation periods on PG1159 evolutionary models with stellar masses ranging from 0.530 to 0.741 Mo. PG1159 stellar models are extracted from the complete evolution of progenitor stars started from the ZAMS, through the thermally pulsing AGB and born-again phases to the domain of the PG 1159 stars. We constrained the stellar mass of RX J2117.1+3412 by comparing the observed period spacing with the asymptotic period spacing and with the average of the computed period spacings. We also employed the individual observed periods to find a representative seismological model. We derive a stellar mass of 0.56-0.57 Mo from the period spacing data alone. In addition, we found a best-fit model representative for RX J2117.1+3412 with an effective temperature of 163,400 K, a stellar mass of 0.565 Mo, and a surface gravity log g= 6.61. The derived stellar luminosity and radius are log(L/Lo)= 3.36 and log(R/Ro)= -1.23, respectively, and the He-rich envelope thickness is Menv= 0.02 Mo. We derive a seismic distance of 452 pc and a linear size of the planetary nebula of 1.72 pc. These inferences seem to solve the discrepancy between the RX J2117.1+3412 evolutionary timescale and the size of the nebula. All of the seismological tools we use concur to the conclusion that RX J2117.1+3412 must have a stellar mass of 0.565 Mo much in agreement with recent asteroseismology studies and in clear conflict with the predictions of spectroscopy plus evolutionary tracks.Comment: 10 pages, 6 figures, 2 tables. Accepted for publication in Astronomy and Astrophysics. Erratum available as a separate fil

    Noble gas signatures constrain oil-field water as the carrier phase of hydrocarbons occurring in shallow aquifers in the San Joaquin Basin, USA

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Karolyte, R., Barry, P. H., Hunt, A. G., Kulongoski, J. T., Tyne, R. L., Davis, T. A., Wright, M. T., McMahon, P. B., & Ballentine, C. J. Noble gas signatures constrain oil-field water as the carrier phase of hydrocarbons occurring in shallow aquifers in the San Joaquin Basin, USA. Chemical Geology, 584, (2021): 120491, https://doi.org/10.1016/j.chemgeo.2021.120491.Noble gases record fluid interactions in multiphase subsurface environments through fractionation processes during fluid equilibration. Water in the presence of hydrocarbons at the subsurface acquires a distinct elemental signature due to the difference in solubility between these two fluids. We find the atmospheric noble gas signature in produced water is partially preserved after hydrocarbons production and water disposal to unlined ponds at the surface. This signature is distinct from meteoric water and can be used to trace oil-field water seepage into groundwater aquifers. We analyse groundwater (n = 30) and fluid disposal pond (n = 2) samples from areas overlying or adjacent to the Fruitvale, Lost Hills, and South Belridge Oil Fields in the San Joaquin Basin, California, USA. Methane (2.8 × 10−7 to 3 × 10−2 cm3 STP/cm3) was detected in 27 of 30 groundwater samples. Using atmospheric noble gas signatures, the presence of oil-field water was identified in 3 samples, which had equilibrated with thermogenic hydrocarbons in the reservoir. Two (of the three) samples also had a shallow microbial methane component, acquired when produced water was deposited in a disposal pond at the surface. An additional 6 samples contained benzene and toluene, indicative of interaction with oil-field water; however, the noble gas signatures of these samples are not anomalous. Based on low tritium and 14C contents (≤ 0.3 TU and 0.87–6.9 pcm, respectively), the source of oil-field water is likely deep, which could include both anthropogenic and natural processes. Incorporating noble gas analytical techniques into the groundwater monitoring programme allows us to 1) differentiate between thermogenic and microbial hydrocarbon gas sources in instances when methane isotope data are unavailable, 2) identify the carrier phase of oil-field constituents in the aquifer (gas, oil-field water, or a combination), and 3) differentiate between leakage from a surface source (disposal ponds) and from the hydrocarbon reservoir (either along natural or anthropogenic pathways such as faulty wells).This work was supported by the U.S. Geological Survey as part of the California State Water Resources Control Board's Oil and Gas Regional Monitoring Program
    • …
    corecore