302 research outputs found

    Effect of the Dielectric-Constant Mismatch and Magnetic Field on the Binding Energy of Hydrogenic Impurities in a Spherical Quantum Dot

    Full text link
    Within the effective mass approximation and variational method the effect of dielectric constant mismatch between the size-quantized semiconductor sphere, coating and surrounding environment on impurity binding energy in both the absence and presence of a magnetic field is considered. The dependences of the binding energy of a hydrogenic on-center impurity on the sphere and coating radii, alloy concentration, dielectric-constant mismatch, and magnetic field intensity are found for the GaAs-Ga_(1-x)Al_(x)As-AlAs (or vacuum) system

    Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes

    Get PDF
    Copyright: Β© 2010 Stimpson et al.Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extrachromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.This work was supported by the Tumorzentrum Heidelberg/Mannheim grant (D.10026941)and by March of Dimes Research Foundation grant #1-FY06-377 and NIH R01 GM069514

    Perspectives on the Trypanosoma cruzi-host cell receptor interaction

    Get PDF
    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets

    Effects and predictors of shoulder muscle massage for patients with posterior shoulder tightness

    Get PDF
    Background: Clinical approaches like mobilization, stretching, and/or massage may decrease shoulder tightness and improve symptoms in subjects with stiff shoulders. We investigated the effect and predictors of effectiveness of massage in the treatment of patients with posterior shoulder tightness. ;Methods: A randomized controlled trial was conducted in a hospital-based outpatient practice (orthopedic and rehabilitation). Forty-three women and 17 men (mean age = 54 years, range 43-73 years) with posterior shoulder tightness participated and were randomized into massage and control groups (n = 30 per group). A physical therapist provided the massage on the posterior deltoid, infraspinatus, and teres minor of the involved shoulder for 18 minutes [about 6 minutes for each muscle] two times a week for 4 weeks. For the control group, one therapist applied light hand touch on the muscles 10 minutes two times a week for 4 weeks. Glenohumeral internal rotation ROM, functional status, and muscle tightness were the main outcomes. Additionally, the potential factors on the effectiveness of massage were analyzed by multivariate logistic regression. For this analysis, patients with functional score improvement at least 20% after massage were considered responsive, and the others were considered nonresponsive. ;Results: Fifty-two patients completed the study (29 for the massage and 23 for the control). The overall mean internal rotation ROM increased significantly in the massage group compared to the control (54.9 degrees v.s. 34.9 degrees; P <= 0.001). There were 21 patients in the responsive group and 8 in the nonresponsive group. Among the factors, duration of symptoms, functional score, and posterior deltoid tightness were significant predictors of effectiveness of massage. ;Conclusions: Massage was an effective treatment for patients with posterior shoulder tightness, but was less effective in patients with longer duration of symptoms, higher functional limitation, and less posterior deltoid tightness

    CRK9 contributes to regulation of mitosis and cytokinesis in the procyclic form of Trypanosoma brucei

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Trypanosoma brucei </it>cell cycle is regulated by combinations of cyclin/CRKs (cdc2 related kinases). Recently, two additional cyclins (CYC10, CYC11) and six new CRK (CRK7-12) homologues were identified in the <it>T. brucei </it>genome database <abbrgrp><abbr bid="B1">1</abbr><abbr bid="B2">2</abbr></abbrgrp>.</p> <p>Results</p> <p>Individual RNAi knockdowns of these new proteins in the procyclic form of <it>T. brucei </it>showed no apparent phenotype except for the CRK9 depletion, which enriched the cells in G2/M phase. But a similar CRK9 knockdown in the bloodstream form caused no apparent phenotype. CRK9 lacks the typical PSTAIRE motif for cyclin binding and the phenylalanine "gatekeeper" but binds to cyclin B2 <it>in vitro </it>and localizes to the nucleus in both forms of <it>T. brucei</it>. CRK9-depleted procyclic-form generated no detectable anucleate cells, suggesting an inhibition of cytokinesis by CRK9 depletion as well. The knockdown enriched cells with one nucleus, one kinetoplast and two closely associated basal bodies with an average distance of 1.08 mm in between, which was shorter than the control value of 1.36 ΞΌm, and the cells became morphologically deformed and rounded with time.</p> <p>Conclusion</p> <p>CRK9 may play a role in mediating the segregation between the two kinetoplast/basal body pairs prior to cytokinetic initiation. Since such a segregation over a relatively significant distance is essential for cytokinetic initiation only in the procyclic but may not be in the bloodstream form, CRK9 could be specifically involved in regulating cytokinetic initiation in the procyclic form of <it>T. brucei</it>.</p

    Lack of Association between Y-Chromosomal Haplogroups and Prostate Cancer in the Korean Population

    Get PDF
    The Y chromosome has recently been suggested to have an association with prostate cancer risk in human populations. Since this chromosome is haploid and lacks recombination over most of its length, haplotypes constructed from binary markers throughout the chromosome can be used for association studies. To assess the possible Y-chromosomal contribution to prostate cancer risk, we have therefore analyzed 14 Y-chromosomal binary markers in 106 prostate cancer cases and 110 controls from the Korean population. In contrast to previous findings in the Japanese population, no statistically significant difference in the distribution of Y-chromosomal haplogroup frequencies was observed between the case and control groups of Koreans. Thus, our data imply that the previously reported associations between Y-chromosomal lineages and a predisposition to, or protection against, prostate cancer might be explained by statistical fluctuations, or by genetic effects that are seen only in some environments

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Polyfunctional Hiv-Specific Antibody Responses Are Associated with Spontaneous Hiv Control

    Get PDF
    Elite controllers (ECs) represent a unique model of a functional cure for HIV-1 infection as these individuals develop HIV-specific immunity able to persistently suppress viremia. Because accumulating evidence suggests that HIV controllers generate antibodies with enhanced capacity to drive antibody-dependent cellular cytotoxicity (ADCC) that may contribute to viral containment, we profiled an array of extra-neutralizing antibody effector functions across HIV-infected populations with varying degrees of viral control to define the characteristics of antibodies associated with spontaneous control. While neither the overall magnitude of antibody titer nor individual effector functions were increased in ECs, a more functionally coordinated innate immune–recruiting response was observed. Specifically, ECs demonstrated polyfunctional humoral immune responses able to coordinately recruit ADCC, other NK functions, monocyte and neutrophil phagocytosis, and complement. This functionally coordinated response was associated with qualitatively superior IgG3/IgG1 responses, whereas HIV-specific IgG2/IgG4 responses, prevalent among viremic subjects, were associated with poorer overall antibody activity. Rather than linking viral control to any single activity, this study highlights the critical nature of functionally coordinated antibodies in HIV control and associates this polyfunctionality with preferential induction of potent antibody subclasses, supporting coordinated antibody activity as a goal in strategies directed at an HIV-1 functional cure

    The C-Terminus of Toxoplasma RON2 Provides the Crucial Link between AMA1 and the Host-Associated Invasion Complex

    Get PDF
    Host cell invasion by apicomplexan parasites requires formation of the moving junction (MJ), a ring-like apposition between the parasite and host plasma membranes that the parasite migrates through during entry. The Toxoplasma MJ is a secreted complex including TgAMA1, a transmembrane protein on the parasite surface, and a complex of rhoptry neck proteins (TgRON2/4/5/8) described as host cell-associated. How these proteins connect the parasite and host cell has not previously been described. Here we show that TgRON2 localizes to the MJ and that two short segments flanking a hydrophobic stretch near its C-terminus (D3 and D4) independently associate with the ectodomain of TgAMA1. Pre-incubation of parasites with D3 (fused to glutathione S-transferase) dramatically reduces invasion but does not prevent injection of rhoptry bulb proteins. Hence, the entire C-terminal region of TgRON2 forms the crucial bridge between TgAMA1 and the rest of the MJ complex but this association is not required for rhoptry protein injection

    Bistable Percepts in the Brain: fMRI Contrasts Monocular Pattern Rivalry and Binocular Rivalry

    Get PDF
    The neural correlates of binocular rivalry have been actively debated in recent years, and are of considerable interest as they may shed light on mechanisms of conscious awareness. In a related phenomenon, monocular rivalry, a composite image is shown to both eyes. The subject experiences perceptual alternations in which the two stimulus components alternate in clarity or salience. The experience is similar to perceptual alternations in binocular rivalry, although the reduction in visibility of the suppressed component is greater for binocular rivalry, especially at higher stimulus contrasts. We used fMRI at 3T to image activity in visual cortex while subjects perceived either monocular or binocular rivalry, or a matched non-rivalrous control condition. The stimulus patterns were left/right oblique gratings with the luminance contrast set at 9%, 18% or 36%. Compared to a blank screen, both binocular and monocular rivalry showed a U-shaped function of activation as a function of stimulus contrast, i.e. higher activity for most areas at 9% and 36%. The sites of cortical activation for monocular rivalry included occipital pole (V1, V2, V3), ventral temporal, and superior parietal cortex. The additional areas for binocular rivalry included lateral occipital regions, as well as inferior parietal cortex close to the temporoparietal junction (TPJ). In particular, higher-tier areas MT+ and V3A were more active for binocular than monocular rivalry for all contrasts. In comparison, activation in V2 and V3 was reduced for binocular compared to monocular rivalry at the higher contrasts that evoked stronger binocular perceptual suppression, indicating that the effects of suppression are not limited to interocular suppression in V1
    • …
    corecore