44 research outputs found

    Influence of land-use on the dynamics, quantity and composition of the organic matter transported across estuaries

    Get PDF
    The flux of terrigenous organic carbon across estuaries is an important and changing component of the global carbon cycle, but it is poorly understood. It has been proposed that estuaries can act either as a transporter of terrestrial dissolved organic carbon (DOC) to the ocean or as a reactor system in which DOC can be buried or transformed into carbon dioxide and released to the atmosphere. However, there is no clear understanding of the factors that drive estuaries to behave in one way or the other. Here we present the results from a study conducted in thirteen British estuaries which drain catchments of diverse land-uses under different hydrological conditions. Our data show that land-use influences the composition of the dissolved organic matter (DOM), the mixing dynamics of DOC and the quantity of DOC exported off the estuaries. Estuaries, whose catchments are less intensively managed and represent more natural ecosystems (average proportion of arable and (sub)-urban land-use ~12 %), contain a higher proportion of biologically-refractory “humic-like” DOM, which is transported conservatively across the salinity gradient. In contrast, estuaries whose catchments are more intensively managed (average proportion of arable and (sub)-urban land-use ~32 %) contain a high fraction of “protein-like” DOM which is transported non-conservatively, and thus suggest the existence of additions and removal processes across the salinity gradient. Furthermore, estuaries with more intensively managed catchments tend to export more DOC to coastal areas than they receive from rivers. Our results indicate that future changes in land-use have the potential to alter aquatic fluxes of terrigenous DOM and the fate of the constituent carbon

    Dissolved inorganic carbon export from rivers of Great Britain: Spatial distribution and potential catchment-scale controls

    Get PDF
    Dissolved inorganic carbon (DIC) fluxes from the land to ocean have been quantified for many rivers globally. However, CO2 fluxes to the atmosphere from inland waters are quantitatively significant components of the global carbon cycle that are currently poorly constrained. Understanding, the relative contributions of natural and human-impacted processes on the DIC cycle within catchments may provide a basis for developing improved management strategies to mitigate free CO2 concentrations in rivers and subsequent evasion to the atmosphere. Here, a large, internally consistent dataset collected from 41 catchments across Great Britain (GB), accounting for ∼36% of land area (∼83,997 km2) and representative of national land cover, was used to investigate catchment controls on riverine dissolved inorganic carbon (DIC), bicarbonate (HCO3−) and free CO2 concentrations, fluxes to the coastal sea and annual yields per unit area of catchment. Estimated DIC flux to sea for the survey catchments was 647 kt DIC yr−1 which represented 69% of the total dissolved carbon flux from these catchments. Generally, those catchments with large proportions of carbonate and sedimentary sandstone were found to deliver greater DIC and HCO3− to the ocean. The calculated mean free CO2 yield for survey catchments (i.e. potential CO2 emission to the atmosphere) was 0.56 t C km−2 yr−1. Regression models demonstrated that whilst river DIC (R2 = 0.77) and HCO3− (R2 = 0.77) concentrations are largely explained by the geology of the landmass, along with a negative correlation to annual precipitation, free CO2 concentrations were strongly linked to catchment macronutrient status. Overall, DIC dominates dissolved C inputs to coastal waters, meaning that estuarine carbon dynamics are sensitive to underlying geology and therefore are likely to be reasonably constant. In contrast, potential losses of carbon to the atmosphere via dissolved CO2, which likely constitute a significant fraction of net terrestrial ecosystem production and hence the national carbon budget, may be amenable to greater direct management via altering patterns of land use

    Sources, composition, and export of particulate organic matter across British estuaries

    Get PDF
    Estuaries receive and process a large amount of particulate organic carbon (POC) prior to its export into coastal waters. Studying the origin of this POC is key to understanding the fate of POC and the role of estuaries in the global carbon cycle. Here, we evaluated the concentrations of POC, as well as particulate organic nitrogen (PON), and used stable carbon and nitrogen isotopes to assess their sources across 13 contrasting British estuaries during five different sampling campaigns over 1 year. We found a high variability in POC and PON concentrations across the salinity gradient, reflecting inputs, and losses of organic material within the estuaries. Catchment land cover appeared to influence the contribution of POC to the total organic carbon flux from the estuary to coastal waters, with POC contributions >36% in estuaries draining catchments with a high percentage of urban/suburban land, and <11% in estuaries draining catchments with a high peatland cover. There was no seasonal pattern in the isotopic composition of POC and PON, suggesting similar sources for each estuary over time. Carbon isotopic ratios were depleted (−26.7 ± 0.42‰, average ± sd) at the lowest salinity waters, indicating mainly terrigenous POC (TPOC). Applying a two-source mixing model, we observed high variability in the contribution of TPOC at the highest salinity waters between estuaries, with a median value of 57%. Our results indicate a large transport of terrigenous organic carbon into coastal waters, where it may be buried, remineralized, or transported offshore

    Fatty acids from membrane lipids become incorporated into lipid bodies during Myxococcus xanthus differentiation.

    No full text
    Myxococcus xanthus responds to amino acid limitation by producing fruiting bodies containing dormant spores. During development, cells produce triacylglycerides in lipid bodies that become consumed during spore maturation. As the cells are starved to induce development, the production of triglycerides represents a counterintuitive metabolic switch. In this paper, lipid bodies were quantified in wild-type strain DK1622 and 33 developmental mutants at the cellular level by measuring the cross sectional area of the cell stained with the lipophilic dye Nile red. We provide five lines of evidence that triacylglycerides are derived from membrane phospholipids as cells shorten in length and then differentiate into myxospores. First, in wild type cells, lipid bodies appear early in development and their size increases concurrent with an 87% decline in membrane surface area. Second, developmental mutants blocked at different stages of shortening and differentiation accumulated lipid bodies proportionate with their cell length with a Pearson's correlation coefficient of 0.76. Third, peripheral rods, developing cells that do not produce lipid bodies, fail to shorten. Fourth, genes for fatty acid synthesis are down-regulated while genes for fatty acid degradation are up regulated. Finally, direct movement of fatty acids from membrane lipids in growing cells to lipid bodies in developing cells was observed by pulse labeling cells with palmitate. Recycling of lipids released by Programmed Cell Death appears not to be necessary for lipid body production as a fadL mutant was defective in fatty acid uptake but proficient in lipid body production. The lipid body regulon involves many developmental genes that are not specifically involved in fatty acid synthesis or degradation. MazF RNA interferase and its target, enhancer-binding protein Nla6, appear to negatively regulate cell shortening and TAG accumulation whereas most cell-cell signals activate these processes

    Multifaceted Hybrid Carbon Fibers: Applications in Renewables, Sensing and Tissue Engineering

    No full text
    The field of material science is continually evolving with first-class discoveries of new nanomaterials. The element carbon is ubiquitous in nature. Due to its valency, it can exist in various forms, also known as allotropes, like diamond, graphite, one-dimensional (1D) carbon nanotube (CNT), carbon fiber (CF) and two-dimensional (2D) graphene. Carbon nano fiber (CNF) is another such material that falls within the category of CF. With much smaller diameters (around hundreds of nanometers) and lengths in microns, CNFs have higher aspect (length to diameter) ratios than CNTs. Because of their unique properties like high electrical and thermal conductivity, CNFs can be applied to many matrices like elastomers, thermoplastics, ceramics and metals. Owing to their outstanding mechanical properties, they can be used as reinforcements that can enhance the tensile and compressive strain limits of the base material. Thus, in this short review, we take a look into the dexterous characteristics of CF and CNF, where they have been hybridized with different materials, and delve deeply into some of the recent applications and advancements of these hybrid fiber systems in the fields of sensing, tissue engineering and modification of renewable devices since favorable mechanical and electrical properties of the CFs and CNFs like high tensile strength and electrical conductivity lead to enhanced device performance

    Lipid bodies are derived from membrane phospholipids.

    No full text
    <p><i>Myxococcus</i> cells were grown in the presence of palmitic acid alkyne (PA<sup>alk</sup>) in A1 minimal medium and stained with Nile red. Click chemistry was used to attach Alexa Fluor 488 azide to PA<sup>alk</sup> prior to visualization. Both Alex Fluor fatty acid and the Nile red stain are visible in membranes during vegetative growth (DK1622 0 h). The PA<sup>alk</sup> was removed and cells were allowed to develop on TPM agar (DK1622 24 h). Labeled membrane lipids were incorporated into Nile red stained lipid bodies, seen in both channels and the merged images. In a strain deficient in lipid body production (LS3931), incorporation occurs into membrane lipids (LS3931 0 h) but not lipid bodies (LS3931 24 h). A <i>fadL</i> mutant (LS3125), defective in fatty acid uptake, is unable to incorporate PA<sup>alk</sup> altogether. Wild-type cells grown in the absence of PA<sup>alk</sup> then allowed to develop (DK1622<sup>a</sup> 24 h) exhibit no fluorescence (bottom row, second panel) indicating little bleed through between channels. Scale bar is 10 µm.</p

    Lipid body production in WT cells during development.

    No full text
    <p>(A) DK1622 cells stained with the lipophilic dye Nile red at times indicated during development. Phase (Left), fluorescence (Right). Bar is 10 µm. (B) Lipid bodies were quantified by measuring the average cross sectional area stained with Nile red using at least 30 cells (grey bars). Cell length was measured using phase contrast images of 30 randomly chosen cells (filled diamonds). At 48 h, the cells are a nearly equal mixture of long, peripheral rods and spherical myxospores.</p

    <i>M. xanthus</i> strains used in this study.

    No full text
    <p><i>M. xanthus</i> strains used in this study.</p

    <i>M. xanthus</i> fatty acid metabolic pathways were analyzed at the transcriptional level using available microarray data from developing cells [13].

    No full text
    <p>The pathway information and gene annotations were obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Genes that are down-regulated (≥1.5 fold), up-regulated (≥1.5 fold) or unchanged during development are shown in green, red, and black, respectively. Blue denotes genes that were not on the microarray. A dashed arrow between two compound names implies that the two names represent the same compound in different stages of polymerization or depolymerization.</p
    corecore