1,263 research outputs found

    On QCD analysis of stucture function F2γF_2^{\gamma} in alternative approach

    Full text link
    The alternative approach to QCD analysis of the photon structure function F2γF_2^{\gamma} is presented. It differs from the conventional one by the presence of the terms which in conventional approach appear in higher orders. We show that this difference concerns also the photonic parton distribution functions. In the alternative approach, the complete LO analysis of F2γF_2^{\gamma} can be performed as all required quantities are known. At the NLO, however, one of the coefficient function is so far not available and thus only the photonic parton distribution function can be computed and compared to those of standard approach. We discuss the numerical difference of these approaches at the LO and the NLO approximation and show that in case of F2γF_2^{\gamma} this difference is non-negligible and may play an important role in the analysis on photon data of the future experiments.Comment: 25 page

    Hypernuclei as chiral solitons

    Full text link
    The identification of flavored multiskyrmions with the ground states of known hypernuclei is successful for several of them, e.g. for isodoublet H(Lambda) - He(Lambda), A=4, isoscalars He(Lambda) (A=5) and Li(Lambda) (A=7). In other cases agreement is not so good, but the behaviour of the binding energy with increasing baryon number is in qualitative agreement with data. Charmed or beauty hypernuclei within this approach are predicted to be bound stronger than strange hypernuclei. This conclusion is stable against variation of poorly known heavy flavor decay constants.Comment: 9 pages, 1 Fig. Presented at the International Workshops on Nuclear and Particle Physics at 50-Gev PS, NP01 (KEK, Japan, December 2001) and NP02 (Kyoto, Japan, September 2002). Some additions and corrections of numerical results are mad

    On Tamm's problem in the Vavilov-Cherenkov radiation theory

    Get PDF
    We analyse the well-known Tamm problem treating the charge motion on a finite space interval with the velocity exceeding light velocity in medium. By comparing Tamm's formulae with the exact ones we prove that former do not properly describe Cherenkov radiation terms. We also investigate Tamm's formula cos(theta)=1/(beta n) defining the position of maximum of the field strengths Fourier components for the infinite uniform motion of a charge. Numerical analysis of the Fourier components of field strengths shows that they have a pronounced maximum at cos(theta)=1/(beta n) only for the charge motion on the infinitely small interval. As the latter grows, many maxima appear. For the charge motion on an infinite interval there is infinite number of maxima of the same amplitude. The quantum analysis of Tamm's formula leads to the same results.Comment: 28 pages, 8 figures, to be published in J.Phys.D:Appl.Phy

    Fine structure of Vavilov-Cherenkov radiation near the Cherenkov threshold

    Full text link
    We analyze the Vavilov-Cherenkov radiation (VCR) in a dispersive nontransparent dielectric air-like medium both below and above the Cherenkov threshold, in the framework of classical electrodynamics. It is shown that the transition to the subthreshold energies leads to the destruction of electromagnetic shock waves and to the sharp reduction of the frequency domain where VCR is emitted. The fine wake-like structure of the Vavilov-Cherenkov radiation survives and manifests the existence of the subthreshold radiation in the domain of anomalous dispersion. These domains can approximately be defined by the two phenomenological parameters of the medium, namely, the effective frequency of oscillators and the damping describing an interaction with the other degrees of freedom.Comment: 9 pages, 6 figure

    Λc+\Lambda^+_c- and Λb\Lambda_b-hypernuclei

    Full text link
    Λc+\Lambda^+_c- and Λb\Lambda_b-hypernuclei are studied in the quark-meson coupling (QMC) model. Comparisons are made with the results for Λ\Lambda-hypernuclei studied in the same model previously. Although the scalar and vector potentials felt by the Λ\Lambda, Λc+\Lambda_c^+ and Λb\Lambda_b in the corresponding hypernuclei multiplet which has the same baryon numbers are quite similar, the wave functions obtained, e.g., for 1s1/21s_{1/2} state, are very different. The Λc+\Lambda^+_c baryon density distribution in Λc+209^{209}_{\Lambda^+_c}Pb is much more pushed away from the center than that for the Λ\Lambda in Λ209^{209}_\LambdaPb due to the Coulomb force. On the contrary, the Λb\Lambda_b baryon density distributions in Λb\Lambda_b-hypernuclei are much larger near the origin than those for the Λ\Lambda in the corresponding Λ\Lambda-hypernuclei due to its heavy mass. It is also found that level spacing for the Λb\Lambda_b single-particle energies is much smaller than that for the Λ\Lambda and Λc+\Lambda^+_c.Comment: Latex, 14 pages, 4 figures, text was extended, version to appear in Phys. Rev.

    Measurement and Interpretation of Fermion-Pair Production at LEP energies above the Z Resonance

    Full text link
    This paper presents DELPHI measurements and interpretations of cross-sections, forward-backward asymmetries, and angular distributions, for the e+e- -> ffbar process for centre-of-mass energies above the Z resonance, from sqrt(s) ~ 130 - 207 GeV at the LEP collider. The measurements are consistent with the predictions of the Standard Model and are used to study a variety of models including the S-Matrix ansatz for e+e- -> ffbar scattering and several models which include physics beyond the Standard Model: the exchange of Z' bosons, contact interactions between fermions, the exchange of gravitons in large extra dimensions and the exchange of sneutrino in R-parity violating supersymmetry.Comment: 79 pages, 16 figures, Accepted by Eur. Phys. J.

    A Determination of the Centre-of-Mass Energy at LEP2 using Radiative 2-fermion Events

    Full text link
    Using e+e- -> mu+mu-(gamma) and e+e- -> qqbar(gamma) events radiative to the Z pole, DELPHI has determined the centre-of-mass energy, sqrt{s}, using energy and momentum constraint methods. The results are expressed as deviations from the nominal LEP centre-of-mass energy, measured using other techniques. The results are found to be compatible with the LEP Energy Working Group estimates for a combination of the 1997 to 2000 data sets.Comment: 20 pages, 6 figures, Accepted by Eur. Phys. J.

    Study of Leading Hadrons in Gluon and Quark Fragmentation

    Get PDF
    The study of quark jets in e+e- reactions at LEP has demonstrated that the hadronisation process is reproduced well by the Lund string model. However, our understanding of gluon fragmentation is less complete. In this study enriched quark and gluon jet samples of different purities are selected in three-jet events from hadronic decays of the Z collected by the DELPHI experiment in the LEP runs during 1994 and 1995. The leading systems of the two kinds of jets are defined by requiring a rapidity gap and their sum of charges is studied. An excess of leading systems with total charge zero is found for gluon jets in all cases, when compared to Monte Carlo Simulations with JETSET (with and without Bose-Einstein correlations included) and ARIADNE. The corresponding leading systems of quark jets do not exhibit such an excess. The influence of the gap size and of the gluon purity on the effect is studied and a concentration of the excess of neutral leading systems at low invariant masses (<~ 2 GeV/c^2) is observed, indicating that gluon jets might have an additional hitherto undetected fragmentation mode via a two-gluon system. This could be an indication of a possible production of gluonic states as predicted by QCD.Comment: 19 pages, 6 figures, Accepted by Phys. Lett.

    Determination of the b quark mass at the M_Z scale with the DELPHI detector at LEP

    Get PDF
    An experimental study of the normalized three-jet rate of b quark events with respect to light quarks events (light= \ell \equiv u,d,s) has been performed using the CAMBRIDGE and DURHAM jet algorithms. The data used were collected by the DELPHI experiment at LEP on the Z peak from 1994 to 2000. The results are found to agree with theoretical predictions treating mass corrections at next-to-leading order. Measurements of the b quark mass have also been performed for both the b pole mass: M_b and the b running mass: m_b(M_Z). Data are found to be better described when using the running mass. The measurement yields: m_b(M_Z) = 2.85 +/- 0.18 (stat) +/- 0.13 (exp) +/- 0.19 (had) +/- 0.12 (theo) GeV/c^2 for the CAMBRIDGE algorithm. This result is the most precise measurement of the b mass derived from a high energy process. When compared to other b mass determinations by experiments at lower energy scales, this value agrees with the prediction of Quantum Chromodynamics for the energy evolution of the running mass. The mass measurement is equivalent to a test of the flavour independence of the strong coupling constant with an accuracy of 7 permil.Comment: 24 pages, 10 figures, Accepted by Eur. Phys. J.
    corecore