185 research outputs found

    Beneficial effects of spices in food preservation and safety

    Get PDF
    Spices have been used since ancient times. Although they have been employed mainly as flavoring and coloring agents, their role in food safety and preservation have also been studied in vitro and in vivo. Spices have exhibited numerous health benefits in preventing and treating a wide variety of diseases such as cancer, aging, metabolic, neurological, cardiovascular, and inflammatory diseases. The present review aims to provide a comprehensive summary of the most relevant and recent findings on spices and their active compounds in terms of targets and mode of action; in particular, their potential use in food preservation and enhancement of shelf life as a natural bioingredient

    Influence of TNF Alpha on Testosterone Induced Cardiac Effects in Isolated Frog Heart Model

    Get PDF
    The effect of Tumor necrosis factor-alpha and testosterone was evaluated on the isolated Rana tigrina frog heart. The isolated frog heart (n= 10) were used for this study and the effect of drugs on myocardial contractility and heart rate was ascertained. Namely three drugs testosterone (4mg), bicalutamide (8mg) and TNF-alpha antagonist infliximab (0.4mg) were utilized for this study. Testosterone caused an increase in heart rate by 11.28% and decrease in myocardial contractility by 17.67%. Similarly bicalutamide caused a 20.11% decrease Heart rate and 41.17% decrease in myocardial contractility. To ascertain the role of TNF-alpha, infliximab was perfused through the heart and it potentiated the inhibitory effect of testosterone on the myocardial contractility and heart rate. The results of this study suggest the importance of TNF-alpha and testosterone hormone in cardiovascular pathophysiology

    Concentrated photovoltaic thermal systems:A component-by-component view on the developments in the design, heat transfer medium and applications

    Get PDF
    The need of the hour in present world scenario is to reduce the emission of greenhouse gases and environmental pollution whilst satisfying the world energy demands. The most promising and readily available source of energy over the whole world is solar energy. One of the ways of taping this energy into useful energy is using Concentrated Photovoltaic Thermal systems. The paper presents the advanced comprehensive review on the design components of Concentrated Photovoltaic Thermal, heat transfer medium, recent application area such as Tissue Dyeing, domestic hot water, Organic Rankine Cycle, and the economic aspect of the Concentrated Photovoltaic Thermal system. Furthermore, the review paper simplifies the classification into two systems namely thermally coupled and thermally decoupled systems. Concentrated Photovoltaic Thermal shows potential to deliver better gains compared to Concentrated Photovoltaic, Photovoltaic and Photovoltaic Thermal. But matching the different components like the heat transfer component and the medium for specific use is an area that requires research. Therefore, this review concentrates more on the advantages and limitations of using different heat transfer components and heat transfer medium. The benefits of this paper would be the understanding of the components of the heat transport system like fins, microchannel, storage tank and underground heat exchangers and the fluid used in the Concentrated Photovoltaic Thermal integrated system like water, air, nanofluids, Phase Change Materials. It is found that the heat transfer device performance is limited due to its large area, thermal losses, mirror effect on the thermal and electrical efficiencies, and the temperature difference between the sink and device. Likewise, the performance of the heat transfer fluid is dependent on the mass flow rate, thermal mass, viscosity, density, time and the required temperature. Finally, for economic feasibility of the Concentrated Photovoltaic Thermal system requires the need for a grid connected system with properly sized system with feed-in-tariff and carbon incentives. Furthermore, the recommendation for heat transfer device, medium and economic aspect is also presented. However, more experimental research is required to further understand the compatibility of each components with Concentrating Photovoltaic Thermal System as presented in way forward

    Evaluation of Daphnia Magna as an Indicator of Toxicity and Treatment Efficacy of Municipal Sewage Treatment Plant

    Get PDF
    Performance evaluation of wastewater treatment plants (WWTPs) with special reference to toxicity reduction using Daphnia magna straus as test organism is very important to study the likely adverse effects of the treated wastewater on the aquatic ecosystem of receiving waters and to detect common environmentally realistic concentrations of pollutants at different concentration levels and toxicity discriminatory ability to distinguish different degree of toxicity and toxic specificity of the compounds on target organisms. This test can be considered as useful analytical tool for screening of chemical analysis and early warning system to monitor the different operational units of wastewater treatment plants. Interrelationship between COD, SS with respect to Daphnia toxicity (Gd) suggests that improvement of the toxicological quality of wastewater could be linked to the removal of both COD and suspended solids. Both the parameters (COD & SS) can serve as a regulatory tool in lieu of an explicit toxicological standard. An important feature of this work was to emphasize the significance of toxicity tests. It could help to reduce influent toxicity and thereby avoid impacting microorganisms\u2019 population in activated sludge systems. This study shows the difference between using physico-chemical and biological criteria to define the quality or toxicity of wastewater, making it clear that both methods are indispensable and complimentary and support the earlier view that Daphnia magna can serve as a valuable model for bio- monitoring of water pollution and for evaluation of the toxicity of an effluent and risk assessment in an aquatic body, as it is highly sensitive to pollutants

    Shape stable composite phase change material with improved thermal conductivity for electrical-to-thermal energy conversion and storage

    Get PDF
    Limited thermal conductivity and leakage of phase change material (PCM) are among the most challenging obstacles that impede their effective applications in real-world scenarios. This study focussed on enhancing the thermal conductivity (TC), address leakage issues and incorporate thermoelectric conversion capabilities by using a single multifunctional scaffold. The shape stable PCM (ss-PCM) composite has been prepared using medium temperature range (~46 °C) commercial grade paraffin wax (PW) as organic PCM while expanded graphite (EG) as an encapsulating scaffold. The composite was prepared using vacuum impregnation method, incorporating various weight percentages (wt.%) of EG. In particular, the three wt.% of EG that has been used to encapsulate PCM are 5 % (ss-PCM1), 10 % (ss-PCM2) and 15 % (ss-PCM3). Then the composite was evaluated for its thermal stability, potential chemical interactions, leakage prevention, optical properties, thermal conductivity and thermo-electric conversion capability. Results revealed that the incorporation of 15 wt% EG in PCM (ss-PCM3) demonstrated no traces of leakage even after heating the composite at 60 °C. In addition, a significant increment of 447 % in thermal conductivity and 98 % in light absorbance has been observed. However, the composite showed a slight decrement of 13.83 % in latent heat related to base PCM. Finally, ss-PCM3 was put through to 500 heating-cooling cycles to evaluate its reliability and potential defects due to thermal fatigue. The characterization results of the composite were in close agreement before and after the thermal cycling, indicating its potential for practical applications. The electro-thermal conversion measurement findings indicate that the ss-PCM3 can achieve a conversion ability of 61.89 % when operated at 4.8 V. Several potential applications for this composite include energy-efficient buildings, infrared thermal concealment, solar energy utilization, and heat insulation

    Study of starch degrading bacteria from kitchen waste soil in the production of amylase by using paddy straw

    Get PDF
    The starch degrading amylolytic enzymes are of crucial importance in biotechnology industries with huge application in food, fermentation, textile and paper production. They are universally distribution in bacteria and fungus. Present study aimed at production of pure form of α-amylase from kitchen waste soil with optimization of raw material such as carbon and nitrogen source of the culture media for it. Objective: To evaluate the kitchen waste soil for production of α-amylase with optimization of carbon and nitrogen source required for culture media. Method: The starch degrading bacteria was isolated from the kitchen waste soil environment and was used for production of α-amylase through submerged. The paddy straw extract was shown the best source of carbon and potassium nitrate as the best source of nitrogen with optimum pH 7.0 and temperature of 30ºC. The fermentor parameters were set with the agitator at speed 200rpm with 100% dissolved O2 at fixed temperature and pH. After completion of the fermentation process, the activity of the enzyme was checked by the DNS method. Results: Enzyme produced and purified by this method, was found to have an enzymatic activity of 0.51 mg/ml after column chromatography by nanodrop spectrophotometer and coincide with standard in SDS-PAGE. Here, we have shown the cheap method of commercial production of economically valuable amylase by utilizing paddy straw

    Analyzing the genetic relatedness of pigeonpea varieties released over last 58 years in India

    Get PDF
    The genetic base of 150 pigeonpea varieties released in India during1960 to 2018 was examined. Of these, 89, 57, three, and one variety were developed by pedigree selection, pureline selection, mutation and population improvement, respectively. Examination of pedigree records of 89 pigeonpea varieties developed through pedigree breeding method between 1971 and 2018 traced back to 113 ancestors. The highest mean genetic contribution was recorded for the genotype T 190 (0.051) accompanied by UPAS 120 (0.049) and ICP 8863 (0.043). The ancestor T 190 appeared with highest frequency of 21, directly as one of the parent (male/female) in four varieties and indirectly in the development of 17 varieties. Similarly, the ancestors UPAS 120 and ICP 8863 were more frequently used (in nine varieties) as direct parents followed by T 21 and C 11 (in five varieties). The variety PRG 176 involved the highest number (9) of ancestors during the course of its development followed by the variety VBN (Rg) 3 with eight ancestors. Results indicated that 51.69% (46 of the 89 varieties) of released varieties were developed through bi-parental crossing whereas 48.31% involved multiple parents. The frequent use of a limited number of ancestors has caused the narrow genetic base of released pigeonpea varieties. We recommend large-scale deployment of novel germplasm resources for generating broad-base breeding populations. This will help to obtain improved pigeonpea cultivars with high grain yield, biotic tolerance and climate adaptation

    High-pressure study of ScVO4 by Raman scattering and ab initio calculations

    Full text link
    We report results of experimental and theoretical lattice-dynamics studies on scandium orthovanadate up to 35 GPa. Raman-active modes of the low-pressure zircon phase are measured up to 8.2 GPa, where the onset of an irreversible zircon-to-scheelite phase transition is detected. Raman-active modes in the scheelite structure are observed up to 16.5 GPa. Beyond 18.2 GPa we detected a gradual splitting of the Eg modes of the scheelite phase, indicating the onset of a second phase transition. Raman symmetries, frequencies, and pressure coefficients in the three phases of ScVO4 are discussed in the light of ab initio lattice-dynamics calculations that support the experimental results. The results on all the three phases of ScVO4 are compared with those previously reported for related orthovanadates.We acknowledge the financial support of the Spanish MCYT under Grants No. MAT2007-65990-C03-01/03, No. MAT2010-21270-C04-01/03/04, and No. CSD2007-00045, and the computation time provided by the Red Espanola de Supercomputacion and the supercomputer Atlante. F.J.M. acknowledges also financial support from "Vicerrectorado de Innovacion y Desarrollo de la UPV" (No. PAID-05-2009 through Project No. UPV2010-0096). Some of the authors are members of the MALTA Consolider Team.Panchal, V.; Manjón Herrera, FJ.; Errandonea, D.; Rodriguez-Hernandez, P.; López-Solano, J.; Muñoz, A.; Achary, S.... (2011). High-pressure study of ScVO4 by Raman scattering and ab initio calculations. Physical Review B. 83(6):641111-1-64111-10. https://doi.org/10.1103/PhysRevB.83.064111S641111-164111-10836Shafi, S. P., Kotyk, M. W., Cranswick, L. M. D., Michaelis, V. K., Kroeker, S., & Bieringer, M. (2009). In Situ Powder X-ray Diffraction, Synthesis, and Magnetic Properties of the Defect Zircon Structure ScVO4−x. Inorganic Chemistry, 48(22), 10553-10559. doi:10.1021/ic900927jMullica, D. F., Sappenfield, E. L., Abraham, M. M., Chakoumakos, B. C., & Boatner, L. A. (1996). Structural investigations of several LnVO4 compounds. Inorganica Chimica Acta, 248(1), 85-88. doi:10.1016/0020-1693(95)04971-1Errandonea, D., & Manjón, F. J. (2008). Pressure effects on the structural and electronic properties of ABX4 scintillating crystals. Progress in Materials Science, 53(4), 711-773. doi:10.1016/j.pmatsci.2008.02.001Aldred, A. T. (1984). Cell volumes of APO4, AVO4, and ANbO4 compounds, where A = Sc, Y, La–Lu. Acta Crystallographica Section B Structural Science, 40(6), 569-574. doi:10.1107/s0108768184002718Errandonea, D., Lacomba-Perales, R., Ruiz-Fuertes, J., Segura, A., Achary, S. N., & Tyagi, A. K. (2009). High-pressure structural investigation of several zircon-type orthovanadates. Physical Review B, 79(18). doi:10.1103/physrevb.79.184104López-Solano, J., Rodríguez-Hernández, P., & Muñoz, A. (2009). Ab initiostudy of high-pressure structural properties of the LuVO4and ScVO4zircon-type orthovanadates. High Pressure Research, 29(4), 582-586. doi:10.1080/08957950903417444Manjón, F. J., Rodríguez-Hernández, P., Muñoz, A., Romero, A. H., Errandonea, D., & Syassen, K. (2010). Lattice dynamics ofYVO4at high pressures. Physical Review B, 81(7). doi:10.1103/physrevb.81.075202Wang, X., Loa, I., Syassen, K., Hanfland, M., & Ferrand, B. (2004). Structural properties of the zircon- and scheelite-type phases ofYVO4at high pressure. Physical Review B, 70(6). doi:10.1103/physrevb.70.064109Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413Errandonea, D., Meng, Y., Somayazulu, M., & Häusermann, D. (2005). Pressure-induced transition in titanium metal: a systematic study of the effects of uniaxial stress. Physica B: Condensed Matter, 355(1-4), 116-125. doi:10.1016/j.physb.2004.10.030Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863Guedes, I., Hirano, Y., Grimsditch, M., Wakabayashi, N., Loong, C.-K., & Boatner, L. A. (2001). Raman study of phonon modes in ErVO4 single crystals. Journal of Applied Physics, 90(4), 1843-1846. doi:10.1063/1.1384858Garg, A. B., Rao, R., Sakuntala, T., Wani, B. N., & Vijayakumar, V. (2009). Phase stability of YbVO4 under pressure: In situ x-ray and Raman spectroscopic investigations. Journal of Applied Physics, 106(6), 063513. doi:10.1063/1.3223327Santos, C. C., Silva, E. N., Ayala, A. P., Guedes, I., Pizani, P. S., Loong, C.-K., & Boatner, L. A. (2007). Raman investigations of rare earth orthovanadates. Journal of Applied Physics, 101(5), 053511. doi:10.1063/1.2437676Zhang, F. X., Wang, J. W., Lang, M., Zhang, J. M., Ewing, R. C., & Boatner, L. A. (2009). High-pressure phase transitions ofScPO4andYPO4. Physical Review B, 80(18). doi:10.1103/physrevb.80.184114Tossell, J. A. (1975). Electronic structures of silicon, aluminum, and magnesium in tetrahedral coordination with oxygen from SCF-X.alpha. MO calculations. Journal of the American Chemical Society, 97(17), 4840-4844. doi:10.1021/ja00850a010Rao, R., Garg, A. B., Sakuntala, T., Achary, S. N., & Tyagi, A. K. (2009). High pressure Raman scattering study on the phase stability of LuVO4. Journal of Solid State Chemistry, 182(7), 1879-1883. doi:10.1016/j.jssc.2009.05.003Duclos, S. J., Jayaraman, A., Espinosa, G. P., Cooper, A. S., & Maines, R. G. (1989). Raman and optical absorption studies of the pressure-induced zircon to scheelite structure transformation in TbVO4 and DyV04. Journal of Physics and Chemistry of Solids, 50(8), 769-775. doi:10.1016/0022-3697(89)90055-3Smirnov, M. B., Mirgorodsky, A. P., Kazimirov, V. Y., & Guinebretière, R. (2008). Bond-switching mechanism for the zircon-scheelite phase transition. Physical Review B, 78(9). doi:10.1103/physrevb.78.094109Flórez, M., Contreras-García, J., Recio, J. M., & Marqués, M. (2009). Quantum-mechanical calculations of zircon to scheelite transition pathways inZrSiO4. Physical Review B, 79(10). doi:10.1103/physrevb.79.104101Rousseau, D. L., Bauman, R. P., & Porto, S. P. S. (1981). Normal mode determination in crystals. Journal of Raman Spectroscopy, 10(1), 253-290. doi:10.1002/jrs.1250100152Mittal, R., Garg, A. B., Vijayakumar, V., Achary, S. N., Tyagi, A. K., Godwal, B. K., … Chaplot, S. L. (2008). Investigation of the phase stability of LuVO4at high pressure using powder x-ray diffraction measurements and lattice dynamical calculations. Journal of Physics: Condensed Matter, 20(7), 075223. doi:10.1088/0953-8984/20/7/075223Manjón, F. J., Errandonea, D., Garro, N., Pellicer-Porres, J., Rodríguez-Hernández, P., Radescu, S., … Muñoz, A. (2006). Lattice dynamics study of scheelite tungstates under high pressure I.BaWO4. Physical Review B, 74(14). doi:10.1103/physrevb.74.144111Manjon, F. J., Errandonea, D., Garro, N., Pellicer-Porres, J., López-Solano, J., Rodríguez-Hernández, P., … Muñoz, A. (2006). Lattice dynamics study of scheelite tungstates under high pressure II.PbWO4. Physical Review B, 74(14). doi:10.1103/physrevb.74.144112Panchal, V., Garg, N., & Sharma, S. M. (2006). Raman and x-ray diffraction investigations on BaMoO4under high pressures. Journal of Physics: Condensed Matter, 18(16), 3917-3929. doi:10.1088/0953-8984/18/16/002Hardcastle, F. D., & Wachs, I. E. (1991). Determination of vanadium-oxygen bond distances and bond orders by Raman spectroscopy. The Journal of Physical Chemistry, 95(13), 5031-5041. doi:10.1021/j100166a025Brown, I. D., & Wu, K. K. (1976). Empirical parameters for calculating cation–oxygen bond valences. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 32(7), 1957-1959. doi:10.1107/s0567740876006869Lacomba-Perales, R., Martinez-García, D., Errandonea, D., Le Godec, Y., Philippe, J., Le Marchand, G., … López-Solano, J. (2010). Experimental and theoretical investigation of the stability of the monoclinicBaWO4-II phase at high pressure and high temperature. Physical Review B, 81(14). doi:10.1103/physrevb.81.144117Tschauner, O., Errandonea, D., & Serghiou, G. (2006). Possible superlattice formation in high-temperature treated carbonaceous MgB2 at elevated pressure. Physica B: Condensed Matter, 371(1), 88-94. doi:10.1016/j.physb.2005.09.042Errandonea, D., Kumar, R. S., Ma, X., & Tu, C. (2008). High-pressure X-ray diffraction study of SrMoO4 and pressure-induced structural changes. Journal of Solid State Chemistry, 181(2), 355-364. doi:10.1016/j.jssc.2007.12.010Errandonea, D., Santamaria-Perez, D., Grover, V., Achary, S. N., & Tyagi, A. K. (2010). High-pressure x-ray diffraction study of bulk and nanocrystalline PbMoO4. Journal of Applied Physics, 108(7), 073518. doi:10.1063/1.3493048Errandonea, D., Santamaria-Perez, D., Bondarenko, T., & Khyzhun, O. (2010). New high-pressure phase of HfTiO4 and ZrTiO4 ceramics. Materials Research Bulletin, 45(11), 1732-1735. doi:10.1016/j.materresbull.2010.06.061Marqués, M., Flórez, M., Recio, J. M., Gerward, L., & Olsen, J. S. (2006). Structure and stability ofZrSiO4under hydrostatic pressure. Physical Review B, 74(1). doi:10.1103/physrevb.74.014104Lacomba-Perales, R., Errandonea, D., Meng, Y., & Bettinelli, M. (2010). High-pressure stability and compressibility ofAPO4(A=La, Nd, Eu, Gd, Er, and Y) orthophosphates: An x-ray diffraction study using synchrotron radiation. Physical Review B, 81(6). doi:10.1103/physrevb.81.064113Long, Y. W., Zhang, W. W., Yang, L. X., Yu, Y., Yu, R. C., Ding, S., … Jin, C. Q. (2005). Pressure-induced structural phase transition in CaCrO4: Evidence from Raman scattering studies. Applied Physics Letters, 87(18), 181901. doi:10.1063/1.2117624Long, Y. W., Yang, L. X., Yu, Y., Li, F. Y., Yu, R. C., Ding, S., … Jin, C. Q. (2006). High-pressure Raman scattering and structural phase transition inYCrO4. Physical Review B, 74(5). doi:10.1103/physrevb.74.054110Errandonea, D., Kumar, R. S., Gracia, L., Beltrán, A., Achary, S. N., & Tyagi, A. K. (2009). Experimental and theoretical investigation ofThGeO4at high pressure. Physical Review B, 80(9). doi:10.1103/physrevb.80.094101Gracia, L., Beltrán, A., & Errandonea, D. (2009). Characterization of theTiSiO4structure and its pressure-induced phase transformations: Density functional theory study. Physical Review B, 80(9). doi:10.1103/physrevb.80.094105Errandonea, D. (2007). Landau theory applied to phase transitions in calcium orthotungstate and isostructural compounds. Europhysics Letters (EPL), 77(5), 56001. doi:10.1209/0295-5075/77/56001Errandonea, D., & Manjón, F. J. (2009). On the ferroelastic nature of the scheelite-to-fergusonite phase transition in orthotungstates and orthomolybdates. Materials Research Bulletin, 44(4), 807-811. doi:10.1016/j.materresbull.2008.09.024Errandonea, D., Pellicer-Porres, J., Manjón, F. J., Segura, A., Ferrer-Roca, C., Kumar, R. S., … Aquilanti, G. (2005). High-pressure structural study of the scheelite tungstatesCaWO4andSrWO4. Physical Review B, 72(17). doi:10.1103/physrevb.72.174106Errandonea, D. (2005). High-pressure X-ray diffraction study of EuWO4 to 12 GPa. physica status solidi (b), 242(14), R125-R127. doi:10.1002/pssb.200541334Begun, G. M., Beall, G. W., Boatner, L. A., & Gregor, W. J. (1981). Raman spectra of the rare earth orthophosphates. Journal of Raman Spectroscopy, 11(4), 273-278. doi:10.1002/jrs.1250110411Podor, R. (1995). Raman spectra of the actinide-bearing monazites. European Journal of Mineralogy, 7(6), 1353-1360. doi:10.1127/ejm/7/6/1353Zhang, C. C., Zhang, Z. M., Dai, R. C., Wang, Z. P., Zhang, J. W., & Ding, Z. J. (2010). High-Pressure Raman and Luminescence Study on the Phase Transition of GdVO4:Eu3+ Microcrystals. The Journal of Physical Chemistry C, 114(42), 18279-18282. doi:10.1021/jp106063cVoron’ko, Y. K., Sobol’, A. A., Shukshin, V. E., Zagumennyĭ, A. I., Zavartsev, Y. D., & Kutovoĭ, S. A. (2009). Raman spectroscopic study of structural disordering in YVO4, GdVO4, and CaWO4 crystals. Physics of the Solid State, 51(9), 1886-1893. doi:10.1134/s1063783409090200Baran, E. J., Escobar, M. E., Fournier, L. L., & Filgueira, R. R. (1981). Die Raman-Spektren der Orthovanadate der Seltenen Erden. Zeitschrift f�r anorganische und allgemeine Chemie, 472(1), 193-199. doi:10.1002/zaac.19814720123Frost, R. L., Henry, D. A., Weier, M. L., & Martens, W. (2006). Raman spectroscopy of three polymorphs of BiVO4: clinobisvanite, dreyerite and pucherite, with comparisons to (VO4)3-bearing minerals: namibite, pottsite and schumacherite. Journal of Raman Spectroscopy, 37(7), 722-732. doi:10.1002/jrs.1499Blin, J. L., Lorriaux-Rubbens, A., Wallart, F., & Wignacourt, J. P. (1996). Synthesis and structural investigation of the Eu1–xBixVO4scheelite phase: X-ray diffraction, Raman scattering and Eu3+luminescence. J. Mater. Chem., 6(3), 385-389. doi:10.1039/jm9960600385Manjón, F. J., Errandonea, D., López-Solano, J., Rodríguez-Hernández, P., & Muñoz, A. (2009). Negative pressures in CaWO4 nanocrystals. Journal of Applied Physics, 105(9), 094321. doi:10.1063/1.3116727Tokunaga, S., Kato, H., & Kudo, A. (2001). Selective Preparation of Monoclinic and Tetragonal BiVO4with Scheelite Structure and Their Photocatalytic Properties. Chemistry of Materials, 13(12), 4624-4628. doi:10.1021/cm0103390Rice, C. E., & Robinson, W. R. (1976). Lanthanum orthovanadate. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 32(7), 2232-2233. doi:10.1107/s0567740876007450Errandonea, D., Manjón, F. J., Somayazulu, M., & Häusermann, D. (2004). Effects of pressure on the local atomic structure of CaWO4 and YLiF4: mechanism of the scheelite-to-wolframite and scheelite-to-fergusonite transitions. Journal of Solid State Chemistry, 177(4-5), 1087-1097. doi:10.1016/j.jssc.2003.10.01

    Thermal performance and corrosion resistance analysis of inorganic eutectic phase change material with one dimensional carbon nanomaterial

    Get PDF
    The inherent thermal characteristics, supercooling phenomenon, and corrosion issues associated with salt hydrate phase change materials (PCMs) limit their practical applications. In this research work, we report a newly formulated eutectic salt hydrate PCM using a) sodium sulphate decahydrate (SSD) & b) sodium phosphate dibasic dodecahydrate (SPDD); with a focus on customizing its properties to enhance its suitability for low temperature thermal regulation (achieving a melting point of 27.8 °C and a high heat storage capacity of 215 J/g). Additionally, we have successfully reduced the degree of supercooling and introduced corrosion resistant properties to this PCM. To enhance both the thermal energy transfer rate and optical absorbance of the eutectic PCM, we have incorporated one-dimensional (1D) multiwall carbon nanotube (MWCNT) at various weight fractions, extending up to 0.9 %, utilizing a two-step method. The dispersion and chemical stability of SSD/SPDD + MWCNT nanocomposite are verified through the morphological visual and spectral peaks obtained in Fourier transfer infrared spectroscopy. Additionally, studies evaluating the optical and thermal property reveal a substantial 500 % increase in absorbance, a notable 77.9 % reduction in transmissibility, a thermal conductivity increase from 0.464 W/m⋅K to 0.742 W/m⋅K (reflecting a 59.9 % increment), and the retention of a consistent melting enthalpy of 218.6 J/g. This stability is attributed to the intermolecular interaction with MWCNT. Similary, the degree of supercooling (ΔT s) for the SSD/SPDD EPCM containing MWCNT decreased to 2.2 °C from 16.5 °C, marking an 86 % reduction compared to the pure eutectic salt solution. Furthermore, this composite demonstrated enhanced thermal and chemical stability throughout 200 thermal cycles. Auxiliary ANSYS simulation, with transient boundary condition, are provided to analyze the heat transfer interactions between the thermic fluid and the newly developed PCM when integrated into a thermal regulation system. Subsequently, a corrosion analysis of the developed eutectic PCM and the nanocomposite eutectic PCM exhibits a corrosion rate of 0.018 mpy, well below the permissible level (<5mpy). The insights gained from the development of this nanocomposite PCM offer valuable guidance for the design and creation of tailored eutectic PCM for low-temperature thermal regulation systems, resulting in significant energy savings
    • …
    corecore