359 research outputs found

    Structural and Electronic Properties of Small Neutral (MgO)n Clusters

    Get PDF
    Ab initio Perturbed Ion (PI) calculations are reported for neutral stoichiometric (MgO)n clusters (n<14). An extensive number of isomer structures was identified and studied. For the isomers of (MgO)n (n<8) clusters, a full geometrical relaxation was considered. Correlation corrections were included for all cluster sizes using the Coulomb-Hartree-Fock (CHF) model proposed by Clementi. The results obtained compare favorably to the experimental data and other previous theoretical studies. Inclusion of correlaiotn is crucial in order to achieve a good description of these systems. We find an important number of new isomers which allows us to interpret the experimental magic numbers without the assumption of structures based on (MgO)3 subunits. Finally, as an electronic property, the variations in the cluster ionization potential with the cluster size were studied and related to the structural isomer properties.Comment: 24 pages, LaTeX, 7 figures in GIF format. Accepted for publication in Phys. Rev.

    Structural Transitions and Global Minima of Sodium Chloride Clusters

    Full text link
    In recent experiments on sodium chloride clusters structural transitions between nanocrystals with different cuboidal shapes were detected. Here we determine reaction pathways between the low energy isomers of one of these clusters, (NaCl)35Cl-. The key process in these structural transitions is a highly cooperative rearrangement in which two parts of the nanocrystal slip past one another on a {110} plane in a direction. In this way the nanocrystals can plastically deform, in contrast to the brittle behaviour of bulk sodium chloride crystals at the same temperatures; the nanocrystals have mechanical properties which are a unique feature of their finite size. We also report and compare the global potential energy minima for (NaCl)NCl- using two empirical potentials, and comment on the effect of polarization.Comment: extended version, 13 pages, 8 figures, revte

    Emergence of Bulk CsCl Structure in (CsCl)nCs+ Cluster Ions

    Full text link
    The emergence of CsCl bulk structure in (CsCl)nCs+ cluster ions is investigated using a mixed quantum-mechanical/semiempirical theoretical approach. We find that rhombic dodecahedral fragments (with bulk CsCl symmetry) are more stable than rock-salt fragments after the completion of the fifth rhombic dodecahedral atomic shell. From this size (n=184) on, a new set of magic numbers should appear in the experimental mass spectra. We also propose another experimental test for this transition, which explicitely involves the electronic structure of the cluster. Finally, we perform more detailed calculations in the size range n=31--33, where recent experimental investigations have found indications of the presence of rhombic dodecahedral (CsCl)32Cs+ isomers in the cluster beams.Comment: LaTeX file. 6 pages and 4 pictures. Accepted for publication in Phys. Rev.

    A transient homotypic interaction model for the influenza A virus NS1 protein effector domain

    Get PDF
    Influenza A virus NS1 protein is a multifunctional virulence factor consisting of an RNA binding domain (RBD), a short linker, an effector domain (ED), and a C-terminal 'tail'. Although poorly understood, NS1 multimerization may autoregulate its actions. While RBD dimerization seems functionally conserved, two possible apo ED dimers have been proposed (helix-helix and strand-strand). Here, we analyze all available RBD, ED, and full-length NS1 structures, including four novel crystal structures obtained using EDs from divergent human and avian viruses, as well as two forms of a monomeric ED mutant. The data reveal the helix-helix interface as the only strictly conserved ED homodimeric contact. Furthermore, a mutant NS1 unable to form the helix-helix dimer is compromised in its ability to bind dsRNA efficiently, implying that ED multimerization influences RBD activity. Our bioinformatical work also suggests that the helix-helix interface is variable and transient, thereby allowing two ED monomers to twist relative to one another and possibly separate. In this regard, we found a mAb that recognizes NS1 via a residue completely buried within the ED helix-helix interface, and which may help highlight potential different conformational populations of NS1 (putatively termed 'helix-closed' and 'helix-open') in virus-infected cells. 'Helix-closed' conformations appear to enhance dsRNA binding, and 'helix-open' conformations allow otherwise inaccessible interactions with host factors. Our data support a new model of NS1 regulation in which the RBD remains dimeric throughout infection, while the ED switches between several quaternary states in order to expand its functional space. Such a concept may be applicable to other small multifunctional proteins

    Lack of SARS Transmission among Healthcare Workers, United States

    Get PDF
    Healthcare workers accounted for a large proportion of persons with severe acute respiratory syndrome (SARS) during the worldwide epidemic of early 2003. We conducted an investigation of healthcare workers exposed to laboratory-confirmed SARS patients in the United States to evaluate infection-control practices and possible SARS-associated coronavirus (SARS-CoV) transmission. We identified 110 healthcare workers with exposure within droplet range (i.e., 3 feet) to six SARS-CoV–positive patients. Forty-five healthcare workers had exposure without any mask use, 72 had exposure without eye protection, and 40 reported direct skin-to-skin contact. Potential droplet- and aerosol-generating procedures were infrequent: 5% of healthcare workers manipulated a patient’s airway, and 4% administered aerosolized medication. Despite numerous unprotected exposures, there was no serologic evidence of healthcare-related SARS-CoV transmission. Lack of transmission in the United States may be related to the relative absence of high-risk procedures or patients, factors that may place healthcare workers at higher risk for infection

    Novel transparent nanocomposite films based on chitosan and bacterial cellulose

    Get PDF
    New nanocomposite films based on different chitosan matrices (two chitosans with different DPs and one water soluble derivative) and bacterial cellulose were prepared by a fully green procedure by casting a water based suspension of chitosan and bacterial cellulose nanofibrils. The films were characterized by several techniques, namely SEM, AFM, X-ray diffraction, TGA, tensile assays and visible spectroscopy. They were highly transparent, flexible and displayed better mechanical properties than the corresponding unfilled chitosan films. These new renewable nanocomposite materials also presented reasonable thermal stability and low O(2) permeability.FCT - SFRH/BD/41388/ 2007FCT - SFRH/BPD/38515/200

    Primary angiosarcoma of the ovary with prominent fibrosis of the ovarian stroma. Case report of an 81-year old patient

    Get PDF
    Primary angiosarcoma of the ovary (AS) is a rare entity with only 31 reported cases. The majority are pure angiosarcomas, the remainder are associated either with teratomas or conventional epithelial tumors. More than 50% of ovarian AS are disseminated at the time of diagnosis, the minority is detected in stage I. The prognosis of ovarian angiosarcoma in general is poor. Most reports refer to younger individuals, aged from 7 to 46 years, and only 2 case reports could be found for patients older than 64 years. Here we present a very unusual case of angiosarcoma in a 81-year-old patient

    Association of HLA class I with severe acute respiratory syndrome coronavirus infection

    Get PDF
    BACKGROUND: The human leukocyte antigen (HLA) system is widely used as a strategy in the search for the etiology of infectious diseases and autoimmune disorders. During the Taiwan epidemic of severe acute respiratory syndrome (SARS), many health care workers were infected. In an effort to establish a screening program for high risk personal, the distribution of HLA class I and II alleles in case and control groups was examined for the presence of an association to a genetic susceptibly or resistance to SARS coronavirus infection. METHODS: HLA-class I and II allele typing by PCR-SSOP was performed on 37 cases of probable SARS, 28 fever patients excluded later as probable SARS, and 101 non-infected health care workers who were exposed or possibly exposed to SARS coronavirus. An additional control set of 190 normal healthy unrelated Taiwanese was also used in the analysis. RESULTS: Woolf and Haldane Odds ratio (OR) and corrected P-value (Pc) obtained from two tails Fisher exact test were used to show susceptibility of HLA class I or class II alleles with coronavirus infection. At first, when analyzing infected SARS patients and high risk health care workers groups, HLA-B*4601 (OR = 2.08, P = 0.04, Pc = n.s.) and HLA-B*5401 (OR = 5.44, P = 0.02, Pc = n.s.) appeared as the most probable elements that may be favoring SARS coronavirus infection. After selecting only a "severe cases" patient group from the infected "probable SARS" patient group and comparing them with the high risk health care workers group, the severity of SARS was shown to be significantly associated with HLA-B*4601 (P = 0.0008 or Pc = 0.0279). CONCLUSIONS: Densely populated regions with genetically related southern Asian populations appear to be more affected by the spreading of SARS infection. Up until recently, no probable SARS patients were reported among Taiwan indigenous peoples who are genetically distinct from the Taiwanese general population, have no HLA-B* 4601 and have high frequency of HLA-B* 1301. While increase of HLA-B* 4601 allele frequency was observed in the "Probable SARS infected" patient group, a further significant increase of the allele was seen in the "Severe cases" patient group. These results appeared to indicate association of HLA-B* 4601 with the severity of SARS infection in Asian populations. Independent studies are needed to test these results
    corecore