1,232 research outputs found
Unbiased estimates of galaxy scaling relations from photometric redshift surveys
Many physical properties of galaxies correlate with one another, and these
correlations are often used to constrain galaxy formation models. Such
correlations include the color-magnitude relation, the luminosity-size
relation, the Fundamental Plane, etc. However, the transformation from
observable (e.g. angular size, apparent brightness) to physical quantity
(physical size, luminosity), is often distance-dependent. Noise in the distance
estimate will lead to biased estimates of these correlations, thus compromising
the ability of photometric redshift surveys to constrain galaxy formation
models. We describe two methods which can remove this bias. One is a
generalization of the V_max method, and the other is a maximum likelihood
approach. We illustrate their effectiveness by studying the size-luminosity
relation in a mock catalog, although both methods can be applied to other
scaling relations as well. We show that if one simply uses photometric
redshifts one obtains a biased relation; our methods correct for this bias and
recover the true relation
Collaborative Systems Thinking: Towards an Understanding of Team-level Systems Thinking
As the engineering workforce ages, skills with long development periods are lost with
retiring individuals faster than are younger engineers developing the skills. Systems thinking is
one such skill. Recent research, (Davidz 2006), has shown the importance of experiential
learning in systems thinking skill development. However, an engineering career begun today has
fewer program experiences than in past decades because of extended program lifecycles and a
reduction in the number of new large-scale engineering programs. This pattern is clearly visible
in the aerospace industry, which (Stephens 2003) cites as already experiencing a systems
thinking shortage.
The ongoing research outlined in this paper explores systems thinking as an emergent
property of teams. Collaborative systems thinking, a term coined by the authors to denote teamlevel
systems thinking, may offer an opportunity to leverage and develop a skill in short supply
by concentrating on the team in addition to the individual.
This paper introduces the proposed definition for collaborative systems thinking, as
developed by the authors, and the outlines the structure and progress of ongoing case research
into the role of organizational culture and standard process usage in the development of
collaborative systems thinking
Promoting Collaborative Systems Thinking Through the Alignment of Culture and Process: Initial Results
5th Annual Conference on Systems Engineering Research (CSER) presentatio
Standardized Process as a Tool for Higher Level Systems Thinking
2007 INCOSE International Symposium presentatio
Evaluation of an entraining droplet activation parameterization using in situ cloud data
This study investigates the ability of a droplet activation parameterization (which considers the effects of entrainment and mixing) to reproduce observed cloud droplet
number concentration (CDNC) in ambient clouds. Predictions of the parameterization are compared against cloud averages of CDNC from ambient cumulus and stratocumulus clouds sampled during CRYSTALâFACE (Key West, Florida, July 2002) and CSTRIPE (Monterey, California, July 2003), respectively. The entrainment parameters required by the
parameterization are derived from the observed liquid water content profiles. For the cumulus clouds considered in the study, CDNC is overpredicted by 45% with the adiabatic
parameterization. When entrainment is accounted for, the predicted CDNC agrees within 3.5%. Cloudâaveraged CDNC for stratocumulus clouds is well captured when entrainment is
not considered. In all cases considered, the entraining parameterization compared favorably against a statistical correlation developed from observations to treat entrainment effects on droplet number. These results suggest that including entrainment effects in the calculation of CDNC, as presented here, could address important overprediction biases associated with using adiabatic CDNC to represent cloudâscale average values
Super-resolution in map-making based on a physical instrument model and regularized inversion. Application to SPIRE/Herschel
We investigate super-resolution methods for image reconstruction from data
provided by a family of scanning instruments like the Herschel observatory. To
do this, we constructed a model of the instrument that faithfully reflects the
physical reality, accurately taking the acquisition process into account to
explain the data in a reliable manner. The inversion, ie the image
reconstruction process, is based on a linear approach resulting from a
quadratic regularized criterion and numerical optimization tools. The
application concerns the reconstruction of maps for the SPIRE instrument of the
Herschel observatory. The numerical evaluation uses simulated and real data to
compare the standard tool (coaddition) and the proposed method. The inversion
approach is capable to restore spatial frequencies over a bandwidth four times
that possible with coaddition and thus to correctly show details invisible on
standard maps. The approach is also applied to real data with significant
improvement in spatial resolution.Comment: Astronomy & Astrophysic
Stochastic modelling of reaction-diffusion processes: algorithms for bimolecular reactions
Several stochastic simulation algorithms (SSAs) have been recently proposed
for modelling reaction-diffusion processes in cellular and molecular biology.
In this paper, two commonly used SSAs are studied. The first SSA is an
on-lattice model described by the reaction-diffusion master equation. The
second SSA is an off-lattice model based on the simulation of Brownian motion
of individual molecules and their reactive collisions. In both cases, it is
shown that the commonly used implementation of bimolecular reactions (i.e. the
reactions of the form A + B -> C, or A + A -> C) might lead to incorrect
results. Improvements of both SSAs are suggested which overcome the
difficulties highlighted. In particular, a formula is presented for the
smallest possible compartment size (lattice spacing) which can be correctly
implemented in the first model. This implementation uses a new formula for the
rate of bimolecular reactions per compartment (lattice site).Comment: 33 pages, submitted to Physical Biolog
MMP-2 mediates local degradation and remodeling of collagen by annulus fibrosus cells of the intervertebral disc
Degeneration of the intervertebral disc (IVD) is characterized by marked degradation and restructuring of the annulus fibrosus (AF). Although several matrix metalloproteinases (MMPs) have been found to be more prevalent in degenerate discs, their coordination and function within the context of the disease process are still not well understood. In this study, we sought to determine whether MMP-2 is associated with degenerative changes in the AF and to identify the manner by which AF cells use MMP-2. Two established animal models of disc degeneration, static compression and transannular needle puncture of rodent caudal discs, were examined for MMP-2 immunopositivity. With lentiviral transduction of an shRNA expression cassette, we screened and identified an effective shRNA sequence for generating stable RNA interference to silence MMP-2 expression in primary rat AF cells. Gelatin films were used to compare gelatinase activity and spatial patterns of degradation between transduced cells, and both noninfected and nonsense shRNA controls. The functional significance of MMP-2 was determined by assessing the ability for cells to remodel collagen gels. Both static compression and 18-g annular puncture of rodent caudal discs stimulated an increase in MMP-2 activity with concurrent lamellar disorganization in the AF, whereas 22-g and 26-g needle injuries did not. To investigate the functional role of MMP-2, we established lentivirus-mediated RNAi to induce stable knockdown of transcript levels by as much as 88%, and protein levels by as much as 95% over a 10-day period. Culturing transduced cells on gelatin films confirmed that MMP-2 is the primary functional gelatinase in AF cells, and that MMP-2 is used locally in regions immediately around AF cells. In collagen gels, transduced cells demonstrated an inability to remodel collagen matrices. Our study indicates that increases in MMP-2 observed in human degenerate discs are mirrored in experimentally induced degenerative changes in rodent animal models. AF cells appear to use MMP-2 in a very directed fashion for local matrix degradation and collagen remodeling. This suggests that MMP-2 may have a functionally significant role in the etiology of degenerative disc disease and could be a potential therapeutic target.https://doi.org/10.1186/ar4224https://doi.org/10.1186/1471-2164-14-28
- âŠ