85 research outputs found

    Intense beam of metastable Muonium

    Full text link
    Precision spectroscopy of the Muonium Lamb shift and fine structure requires a robust source of 2S Muonium. To date, the beam-foil technique is the only demonstrated method for creating such a beam in vacuum. Previous experiments using this technique were statistics limited, and new measurements would benefit tremendously from the efficient 2S production at a low energy muon (<20<20 keV) facility. Such a source of abundant low energy ÎŒ+\mathrm{\mu^+} has only become available in recent years, e.g. at the Low-Energy Muon beamline at the Paul Scherrer Institute. Using this source, we report on the successful creation of an intense, directed beam of metastable Muonium. We find that even though the theoretical Muonium fraction is maximal in the low energy range of 2−52-5 keV, scattering by the foil and transport characteristics of the beamline favor slightly higher ÎŒ+\mathrm{\mu^+} energies of 7−107-10 keV. We estimate that an event detection rate of a few events per second for a future Lamb shift measurement is feasible, enabling an increase in precision by two orders of magnitude over previous determinations

    Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment

    Get PDF
    A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the O(10) MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the Îœe component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section σ(EÎœ) for charged-current Îœe absorption on argon. In the context of a simulated extraction of supernova Îœe spectral parameters from a toy analysis, we investigate the impact of σ(EÎœ) modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on σ(EÎœ) must be substantially reduced before the Îœe flux parameters can be extracted reliably; in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10% bias with DUNE requires σ(EÎœ) to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of σ(EÎœ). A direct measurement of low-energy Îœe-argon scattering would be invaluable for improving the theoretical precision to the needed level

    Evaluation of COVID-19 impact on DELAYing diagnostic-therapeutic pathways of lung cancer patients in Italy (COVID-DELAY study): fewer cases and higher stages from a real-world scenario

    Get PDF
    Introduction: COVID-19 has disrupted the global health care system since March 2020. Lung cancer (LC) patients (pts) represent a vulnerable population highly affected by the pandemic. This multicenter Italian study aimed to evaluate whether the COVID-19 outbreak had an impact on access to cancer diagnosis and treatment of LC pts compared with pre-pandemic time. Methods: Consecutive newly diagnosed LC pts referred to 25 Italian Oncology Departments between March and December 2020 were included. Access rate and temporal intervals between date of symptoms onset and diagnostic and therapeutic services were compared with the same period in 2019. Differences between the 2 years were analyzed using the chi-square test for categorical variables and the Mann\u2013Whitney U test for continuous variables. Results: A slight reduction ( 126.9%) in newly diagnosed LC cases was observed in 2020 compared with 2019 (1523 versus 1637, P = 0.09). Newly diagnosed LC pts in 2020 were more likely to be diagnosed with stage IV disease (P &lt; 0.01) and to be current smokers (someone who has smoked more than 100 cigarettes, including hand-rolled cigarettes, cigars, cigarillos, in their lifetime and has smoked in the last 28 days) (P &lt; 0.01). The drop in terms of new diagnoses was greater in the lockdown period (percentage drop 1212% versus 123.2%) compared with the other months included. More LC pts were referred to a low/medium volume hospital in 2020 compared with 2019 (P = 0.01). No differences emerged in terms of interval between symptoms onset and radiological diagnosis (P = 0.94), symptoms onset and cytohistological diagnosis (P = 0.92), symptoms onset and treatment start (P = 0.40), and treatment start and first radiological revaluation (P = 0.36). Conclusions: Our study pointed out a reduction of new diagnoses with a shift towards higher stage at diagnosis for LC pts in 2020. Despite this, the measures adopted by Italian Oncology Departments ensured the maintenance of the diagnostic-therapeutic pathways of LC pts

    Measurement of the intrinsic hadronic contamination in the NA64−e high-e+/e- purity beam at CERN

    Get PDF
    We present the measurement of the intrinsic hadronic contamination at the CERN SPS H4 beamline configured to transport electrons and positrons at 100 GeV/c. The analysis, performed using data collected by the NA64-e experiment in 2022, is based on calorimetric measurements, exploiting the different interaction mechanisms of electrons and hadrons in the NA64 detector. We determined the contamination by comparing the results obtained using the nominal electron/positron beamline configuration with those from a dedicated setup, in which only hadrons impinged on the detector. We also obtained an estimate of the relative protons, anti-protons and pions yield by exploiting the different absorption probabilities of these particles in matter. We cross-checked our results with a dedicated Monte Carlo simulation for the hadron production at the primary T2 target, finding a good agreement with the experimental measurements

    Follicular Dendritic Cell-Specific Prion Protein (PrPc) Expression Alone Is Sufficient to Sustain Prion Infection in the Spleen

    Get PDF
    Prion diseases are characterised by the accumulation of PrPSc, an abnormally folded isoform of the cellular prion protein (PrPC), in affected tissues. Following peripheral exposure high levels of prion-specific PrPSc accumulate first upon follicular dendritic cells (FDC) in lymphoid tissues before spreading to the CNS. Expression of PrPC is mandatory for cells to sustain prion infection and FDC appear to express high levels. However, whether FDC actively replicate prions or simply acquire them from other infected cells is uncertain. In the attempts to-date to establish the role of FDC in prion pathogenesis it was not possible to dissociate the Prnp expression of FDC from that of the nervous system and all other non-haematopoietic lineages. This is important as FDC may simply acquire prions after synthesis by other infected cells. To establish the role of FDC in prion pathogenesis transgenic mice were created in which PrPC expression was specifically “switched on” or “off” only on FDC. We show that PrPC-expression only on FDC is sufficient to sustain prion replication in the spleen. Furthermore, prion replication is blocked in the spleen when PrPC-expression is specifically ablated only on FDC. These data definitively demonstrate that FDC are the essential sites of prion replication in lymphoid tissues. The demonstration that Prnp-ablation only on FDC blocked splenic prion accumulation without apparent consequences for FDC status represents a novel opportunity to prevent neuroinvasion by modulation of PrPC expression on FDC

    Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment

    Get PDF
    A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the O(10)\mathcal{O}(10) MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the Îœe\nu_e component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section σ(EÎœ)\sigma(E_\nu) for charged-current Îœe\nu_e absorption on argon. In the context of a simulated extraction of supernova Îœe\nu_e spectral parameters from a toy analysis, we investigate the impact of σ(EÎœ)\sigma(E_\nu) modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on σ(EÎœ)\sigma(E_\nu) must be substantially reduced before the Îœe\nu_e flux parameters can be extracted reliably: in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10\% bias with DUNE requires σ(EÎœ)\sigma(E_\nu) to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of σ(EÎœ)\sigma(E_\nu). A direct measurement of low-energy Îœe\nu_e-argon scattering would be invaluable for improving the theoretical precision to the needed level.Comment: 25 pages, 21 figure
    • 

    corecore