21 research outputs found

    The Current Adoption of Dry-Direct Seeding Rice (DDSR) in Thailand and Lessons Learned for Mekong River Delta of Vietnam

    Get PDF
    The paper documents the joint study trip, organized by CCAFS Southeast Asia for Vietnamese rice researchers, extension workers, as well as local decision makers, to visit Thailand in April 2018. The goal of the study trip was to observe and learn the experience of Thai farmers on the large-scale adoption process of dry-direct seeding rice (DDSR), a viable alternative to address regional scarcity of fresh water in irrigation caused by the drought and salinity intrusion in the Mekong River Delta

    A case of hepatic cyst-induced internal jugular venous thrombosis

    Get PDF
    • Echocardiography can demonstrate hepatic cyst–induced right atrial compression. • Hepatic cyst–induced blood flow stasis can cause internal jugular venous thrombus. • Laparoscopic deroofing of hepatic cysts is a safe and effective treatment

    Associations of Underlying Health Conditions With Anxiety and Depression Among Outpatients: Modification Effects of Suspected COVID-19 Symptoms, Health-Related and Preventive Behaviors

    Get PDF
    Objectives: We explored the association of underlying health conditions (UHC) with depression and anxiety, and examined the modification effects of suspected COVID-19 symptoms (S-COVID-19-S), health-related behaviors (HB), and preventive behaviors (PB).Methods: A cross-sectional study was conducted on 8,291 outpatients aged 18–85 years, in 18 hospitals and health centers across Vietnam from 14th February to May 31, 2020. We collected the data regarding participant's characteristics, UHC, HB, PB, depression, and anxiety.Results: People with UHC had higher odds of depression (OR = 2.11; p < 0.001) and anxiety (OR = 2.86; p < 0.001) than those without UHC. The odds of depression and anxiety were significantly higher for those with UHC and S-COVID-19-S (p < 0.001); and were significantly lower for those had UHC and interacted with “unchanged/more” physical activity (p < 0.001), or “unchanged/more” drinking (p < 0.001 for only anxiety), or “unchanged/healthier” eating (p < 0.001), and high PB score (p < 0.001), as compared to those without UHC and without S-COVID-19-S, “never/stopped/less” physical activity, drinking, “less healthy” eating, and low PB score, respectively.Conclusion: S-COVID-19-S worsen psychological health in patients with UHC. Physical activity, drinking, healthier eating, and high PB score were protective factors

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Enhanced up-conversion photoluminescence in fluoride–oxyfluoride nanophosphor films by embedding gold nanoparticles

    No full text
    Owing to their unique non-linear optical character, lanthanide-based up-converting materials are potentially interesting for a wide variety of fields ranging from biomedicine to light harvesting. However, their poor luminescent efficiency challenges the development of technological applications. In this context, localized surface plasmon resonances (LSPRs) have been demonstrated as a valuable strategy to improve light conversion. Herein, we utilize LSPR induced by gold nanoparticles (NPs) to enhance up-conversion photoluminescence (UCPL) in transparent, i.e. scattering-free, films made of nanophosphors formed by fluoride–oxyfluoride host matrix that feature high thermal stability. Transparency allows excitation by an external source without extinction losses caused by unwanted diffuse reflection. We provide a simple method to embed gold NPs in films made of YF/YOF:Yb3+,Er3+ UC nanophosphors, via preparation of a viscous paste composed of both UC nanophosphors and colloidal gold NPs, reducing complexity in sample fabrication. The dimensions of gold NPs are such that their associated LSPR matches spectrally with the green emission band of the Er3+ doped nanophosphors. In order to demonstrate the benefits of plasmonic nanoparticles for UCPL in nanophosphor films, we provide a careful analysis of the structural properties of the composite thin films along with precise characterization of the impact of the gold NPs on the photophysical properties of UC nanophosphors.This project is financially supported by the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (NANOPHOM, grant agreement no. 715832). T. T. N. is thankful to MCIN/AEI/10.13039/501100011033 and European Union Next GenerationEU/PRTR for funding her Juan de la Cierva Formación contract

    Enhancement of upconversion photoluminescence in phosphor nanoparticle thin films using metallic nanoantennas fabricated by colloidal lithography

    No full text
    Lanthanide-doped upconversion nanoparticles (UCNPs), as multifunctional light sources, are finding utility in diverse applications ranging from biotechnology to light harvesting. However, the main challenge in realizing their full potential lies in achieving bright and efficient photon upconversion (UC). In this study, we present a novel approach to fabricate an array of gold nanoantennas arranged in a hexagonal lattice using a simple and inexpensive colloidal lithography technique, and demonstrate a significant enhancement of UC photoluminescence (UCPL) by up to 35-fold through plasmon-enhanced photoexcitation and emission. To elucidate the underlying physical mechanisms responsible for the observed UCPL enhancement, we provide a comprehensive theoretical and experimental characterization, including a detailed photophysical description and numerical simulations of the spatial electric field distribution. Our results shed light on the fundamental principles governing the enhanced UCNPs and pave the way for their potential applications in photonic devices.This project is financially supported by the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (NANOPHOM, grant agreement no. 715832). T.T.N. is thankful to grant FJC2020-046006-I funded by MCIN/AEI /10.13039/501100011033 and by the European Union Next Generation EU/PRTR. M.R. acknowledges CSIC for the funding through a JAE Intro ICU program (JAEIntro-2021-ICMS-01).Peer reviewe

    Highly versatile up-converting oxyfluoride-based nanophosphor films

    No full text
    Fluoride-based compounds doped with rare-earth cations are the preferred choice of materials to achieve efficient upconversion, of interest for a plethora of applications ranging from bioimaging to energy harvesting. Herein, we demonstrate a simple route to fabricate bright upconverting films that are transparent, self-standing, flexible, and emit different colors. Starting from the solvothermal synthesis of uniform and colloidally stable yttrium fluoride nanoparticles doped with Yb3+ and Er3+, Ho3+, or Tm3+, we find the experimental conditions to process the nanophosphors as optical quality films of controlled thickness between few hundreds of nanometers and several micrometers. A thorough analysis of both structural and photophysical properties of films annealed at different temperatures reveals a tradeoff between the oxidation of the matrix, which transitions through an oxyfluoride crystal phase, and the efficiency of the upconversion photoluminescence process. It represents a significant step forward in the understanding of the fundamental properties of upconverting materials and can be leveraged for the optimization of upconversion systems in general. We prove bright multicolor upconversion photoluminescence in oxyfluoride-based phosphor transparent films upon excitation with a 980 nm laser for both rigid and flexible versions of the layers, being possible to use the latter to coat surfaces of arbitrary shape. Our results pave the way toward the development of upconverting coatings that can be conveniently integrated in applications that demand a large degree of versatility.Peer reviewe

    Electrodeposition of Antimony Selenide Thin Films and Application in Semiconductor Sensitized Solar Cells

    No full text
    Sb<sub>2</sub>Se<sub>3</sub> thin films are proposed as an alternative light harvester for semiconductor sensitized solar cells. An innovative electrodeposition route, based on aqueous alkaline electrolytes, is presented to obtain amorphous Sb<sub>2</sub>Se<sub>3</sub>. The amorphous to crystalline phase transition takes place during a soft thermal annealing in Ar atmosphere. The potential of the Sb<sub>2</sub>Se<sub>3</sub> electrodeposited thin films in semiconductor sensitized solar cells is evaluated by preparing TiO<sub>2</sub>/Sb<sub>2</sub>Se<sub>3</sub>/CuSCN planar heterojunction solar cells. The resulting devices generate electricity from the visible and NIR photons, exhibiting the external quantum efficiency onset close to 1050 nm. Although planar architecture is not optimized in terms of charge carrier collection, photocurrent as high as 18 mA/cm<sup>2</sup>, under simulated (AM1.5G) solar light, is achieved. Furthermore, the effect of the Sb<sub>2</sub>Se<sub>3</sub> thickness and microstructural properties on the photocurrent is analyzed, suggesting the hole transport is the main limiting mechanism. The present findings provide significant insights to design efficient semiconductor sensitized solar cells based on advanced architectures (e.g., nanostructured and tandem), opening wide possibilities for progresses in this emerging photovoltaics technology

    One-step wet chemical deposition of NiO from the electrochemical reduction of nitrates in ionic liquid based electrolytes

    No full text
    Aprotic PYR14TFSI (1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)) ionic liquid served to develop a new electrochemical route for one-step deposition of NiO from PYR14NO3 reduction (1-butyl-1-methylpyrrolidinium nitrate) in a Ni(TFSI)2 (Nickel (II) bis(trifluoromethanesulfonyl)imide) containing electrolyte. The high solubility of the novel PYR14NO3 salt in PYR14TFSI (>0.1 M) in comparison with other oxygenated precursors such as oxygen gas, NaNO 3 or KNO3 (i.e. 10-15 mM) allows the formulation of a broad variety of electrolytes which opens wide possibilities to tune the physico-chemical properties of NiO films (e.g. morphology: from flat to nanostructured films). Furthermore, electrochemical deposition in an electrolyte containing low water concentration (>30 ppm by Karl Fisher titration) served to demonstrate that only a small amount of moisture dramatically affects the electrochemical reduction of NO3 -, resulting in OH - generation close to the cathode and subsequent NiO(OH)/Ni(OH) 2 deposition, as proved by X-ray diffraction and X-ray photoelectron spectroscopy. This finding highlights the importance of aprotic ionic liquids in developing a general electrochemical route for metal oxide deposition without the formation of metal hydroxide species, thus avoiding the requirement for post-deposition annealing treatments. The versatility of the present deposition route as well as its impact in (opto)electronic devices was pointed out by the successful preparation of nanostructured n-p ZnO/NiO heterojunctions exhibiting rectifying current-voltage characteristics. © 2013 Elsevier Ltd.Financial support by the European Union (ORION CP-IP 229036-2), Spanish Ministerio de Economia y Competitividad (HOPE CSD2007-0007, Consolider-Ingenio 2010, MAT2010-21156-C03-03, PIB2010US-00652) and Basque Government (IT-621-13) are gratefully acknowledged. R.T-Z. acknowledges the support of the Program “Ramon y Cajal” of the MICINN.Peer Reviewe
    corecore