159 research outputs found

    How Are Women Farmers Doing and Undoing Gender?: An Exploration of Women\u27s Gender Practices in Farming

    Get PDF
    The number of women farmers in the US continues to grow even at a time when the number of men farmers is decreasing. But even as women are experiencing growing representation in this historically men-dominated occupation, they are more likely to operate smaller farm operations, own less land, and earn less than men farmers. Additionally, there are barriers to accessing the full farmer identity due to their invisibility in the largely patriarchal structure of agriculture. In this dissertation, I endeavor to learn more about how women farmers navigate the gendered structure of farming, including barriers to accessing occupation-related resources and their farmer identity, and how women farmers are “doing” or “undoing” gender. Utilizing in-depth qualitative interviews, I interviewed 32 women farmers from 11 states and the country of Italy. I find that three main gendered structural barriers were experienced by the women farmers in this study, including access to capital-related resources, learning how to farm, and the women’s perception of conventional agriculture as a masculine occupation. I contributed to the growing “doing and undoing gender” literature by showing that the women in this study were actively engaged in interactions within and outside of their occupation that both conformed to and resisted traditional gendered expectations, demonstrating that doing and undoing gender is contextual and more of a spectrum than mutually exclusive categories of either/or. I also contributed to the “doing difference” literature by including women farmers of color, whose perspectives have been absent from previous research of women farmers. Their narratives included examples of discrimination and unequal treatment due to their race and gender, demonstrating a clear need for an intersectional analysis of women farmers. I conclude with a discussion of these implications and make policy recommendations based on knowledge gained from this research and offer suggestions for future research

    TGF-β1 Induces an Age-Dependent Inflammation of Nerve Ganglia and Fibroplasia in the Prostate Gland Stroma of a Novel Transgenic Mouse

    Get PDF
    TGF-β1 is overexpressed in wound repair and in most proliferative disorders including benign prostatic hyperplasia and prostate cancer. The stromal microenvironment at these sites is reactive and typified by altered phenotype, matrix deposition, inflammatory responses, and alterations in nerve density and biology. TGF-β1 is known to modulate several stromal responses; however there are few transgenic models to study its integrated biology. To address the actions of TGF-β1 in prostate disorders, we targeted expression of an epitope tagged and constitutively active TGF-β1 via the enhanced probasin promoter to the murine prostate gland epithelium. Transgenic mice developed age-dependent lesions leading to severe, yet focal attenuation of epithelium, and a discontinuous basal lamina. These changes were associated with elevated fibroplasia and frequency of collagenous micronodules in collapsed acini, along with an induced inflammation in nerve ganglia and small vessels. Elevated recruitment of CD115+ myeloid cells but not mature macrophages was observed in nerve ganglia, also in an age-dependent manner. Similar phenotypic changes were observed using a human prostate epithelium tissue recombination xenograft model, where epithelial cells engineered to overexpress TGF-β1 induced fibrosis and altered matrix deposition concurrent with inflammation in the stromal compartment. Together, these data suggest that elevated TGF-β1 expression induces a fibroplasia stromal response associated with breach of epithelial wall structure and inflammatory involvement of nerve ganglia and vessels. The novel findings of ganglia and vessel inflammation associated with formation of collagenous micronodules in collapsed acini is important as each of these are observed in human prostate carcinoma and may play a role in disease progression

    Primary Xenografts of Human Prostate Tissue as a Model to Study Angiogenesis Induced by Reactive Stroma

    Get PDF
    Characterization of the mechanism(s) of androgen-driven human angiogenesis could have significant implications for modeling new forms of anti-angiogenic therapies for CaP and for developing targeted adjuvant therapies to improve efficacy of androgen-deprivation therapy. However, models of angiogenesis by human endothelial cells localized within an intact human prostate tissue architecture are until now extremely limited. This report characterizes the burst of angiogenesis by endogenous human blood vessels in primary xenografts of fresh surgical specimens of benign prostate or prostate cancer (CaP) tissue that occurs between Days 6–14 after transplantation into SCID mice pre-implanted with testosterone pellets. The wave of human angiogenesis was preceded by androgen-mediated up-regulation of VEGF-A expression in the stromal compartment. The neo-vessel network anastomosed to the host mouse vascular system between Days 6–10 post-transplantation, the angiogenic response ceased by Day 15, and by Day 30 the vasculature had matured and stabilized, as indicated by a lack of leakage of serum components into the interstitial tissue space and by association of nascent endothelial cells with mural cells/pericytes. The angiogenic wave was concurrent with the appearance of a reactive stroma phenotype, as determined by staining for α-SMA, Vimentin, Tenascin, Calponin, Desmin and Masson's trichrome, but the reactive stroma phenotype appeared to be largely independent of androgen availability. Transplantation-induced angiogenesis by endogenous human endothelial cells present in primary xenografts of benign and malignant human prostate tissue was preceded by induction of androgen-driven expression of VEGF by the prostate stroma, and was concurrent with and the appearance of a reactive stroma phenotype. Androgen-modulated expression of VEGF-A appeared to be a causal regulator of angiogenesis, and possibly of stromal activation, in human prostate xenografts

    Enhanced progression of human prostate cancer PC3 cells induced by the microenvironment of the seminal vesicle

    Get PDF
    The objective of this study was to characterise the mechanism mediating the prostate cancer progression induced by the microenvironment of seminal vesicle (SV). The invasive potential of PC3 cells significantly increased after treatment with extract from SV of NOD/SCID mouse. Among several growth factors and cytokines that were present in the SV extract, transforming growth factor-β1 (TGF-β1) significantly enhanced the invasive potential of PC3 cells; however, the additional treatment with neutralising antibody against TGF-β1 suppressed the enhanced invasive potential induced by the SV extract. Changes in the invasive potential in PC3 cells after treatment with the SV extract and/or TGF-β1 were in proportion to those in the production of urokinase-type plasminogen activator (uPA) by PC3 cells. Tumour growth as well as the incidence of lymph node metastasis in NOD/SCID mice after the injection of PC3 cells into the SV were significantly greater than those after the injection into the prostate. These findings suggest that the microenvironment of SV enhances the progression of prostate cancer through a stimulated invasive potential, and that enhanced uPA production in prostate cancer cells induced by TGF-β1 could therefore be one of the most important mechanisms involved in the progression of prostate cancer after SV invasion

    Microscale characterization of prostate biopsies tissues using optical coherence elastography and second harmonic generation imaging

    Get PDF
    © 2018 USCAP, Inc All rights reserved. Photonics, especially optical coherence elastography (OCE) and second harmonic generation (SHG) imaging are novel high-resolution imaging modalities for characterization of biological tissues. Following our preliminary experience, we hypothesized that OCE and SHG imaging would delineate the microstructure of prostate tissue and aid in distinguishing cancer from the normal benign prostatic tissue. Furthermore, these approaches may assist in characterization of the grade of cancer, as well. In this study, we confirmed a high diagnostic accuracy of OCE and SHG imaging in the detection and characterization of prostate cancer for a large set of biopsy tissues obtained from men suspected to have prostate cancer using transrectal ultrasound (TRUS). The two techniques and methods described here are complementary, one depicts the stiffness of tissues and the other illustrates the orientation of collagen structure around the cancerous lesions. The results showed that stiffness of cancer tissue was ∼57.63% higher than that of benign tissue (Young's modulus of 698.43±125.29 kPa for cancerous tissue vs 443.07±88.95 kPa for benign tissue with OCE. Using histology as a reference standard and 600 kPa as a cut-off threshold, the data analysis showed sensitivity and specificity of 89.6 and 99.8%, respectively. Corresponding positive and negative predictive values were 99.5 and 94.6%, respectively. There was a significant difference noticed in terms of Young's modulus for different Gleason scores estimated by OCE (P-value<0.05). For SHG, distinct patterns of collagen distribution were seen for different Gleason grade disease with computed quantification employing a ratio of anisotropic to isotropic (A:I ratio) and this correlated with disease aggressiveness

    Prostate cancer and Hedgehog signalling pathway

    Get PDF
    [Abstract] The Hedgehog (Hh) family of intercellular signalling proteins have come to be recognised as key mediators in many fundamental processes in embryonic development. Their activities are central to the growth, patterning and morphogenesis of many different regions within the bodies of vertebrates. In some contexts, Hh signals act as morphogens in the dose-dependent induction of distinct cell fates within a target field, in others as mitogens in the regulation of cell proliferation or as inducing factors controlling the form of a developing organ. These diverse functions of Hh proteins raise many intriguing questions about their mode of action. Various studies have now demonstrated the function of Hh signalling in the control of cell proliferation, especially for stem cells and stem-like progenitors. Abnormal activation of the Hh pathway has been demonstrated in a variety of human tumours. Hh pathway activity in these tumours is required for cancer cell proliferation and tumour growth. Recent studies have uncovered the role for Hh signalling in advanced prostate cancer and demonstrated that autocrine signalling by tumour cells is required for proliferation, viability and invasive behaviour. Thus, Hh signalling represents a novel pathway in prostate cancer that offers opportunities for prognostic biomarker development, drug targeting and therapeutic response monitoring

    Cancer-associated fibroblasts are positively correlated with metastatic potential of human gastric cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prognosis of gastric cancer patients is difficult to predict because of defects in establishing the surgical-pathological features. Cancer-associated fibroblasts (CAFs) have been found to play prominent role in promoting tumor growth, invasion and metastasis. Thus raises the hypothesis that the extent of CAFs prevalence may help to establish the prognosis of gastric cancer patients.</p> <p>Methods</p> <p>Immunochemistry and realtime-PCR experiments were carried out to compare the expression of proteins which are specific markers of CAFs or secreted by CAFs in the tumor and normal tissue specimens. The extent of CAFs' prevalence was graded according to immunochemical staining, and correlation was further analyzed between CAFs' prevalence and other tumor characteristics which may influence the prognosis of gastric cancer patients.</p> <p>Results</p> <p>Nearly 80 percent of normal gastric tissues were negative or weak positive for CAFs staining, while more than 60 percent of gastric cancer tissues were moderate or strong positive for CAFs staining. Realtime-PCR results also showed significant elevated expression of FAP, SDF-1 and TGF-β1 in gastric cancer tissues compared to normal gastric tissues. Further analysis showed that CAFs' prevalence was correlated with tumor size, depth of the tumor, lymph node metastasis, liver metastasis or peritoneum metastasis.</p> <p>Conclusions</p> <p>Reactive cancer associated fibroblasts (CAFs) were frequently accumulated in gastric cancer tissues, and the prevalence of CAFs was correlated with tumor size, depth of the tumor and tumor metastasis, thus give some supports for establishing the prognosis of the gastric cancer patients.</p

    Selective Alpha-Particle Mediated Depletion of Tumor Vasculature with Vascular Normalization

    Get PDF
    BACKGROUND: Abnormal regulation of angiogenesis in tumors results in the formation of vessels that are necessary for tumor growth, but compromised in structure and function. Abnormal tumor vasculature impairs oxygen and drug delivery and results in radiotherapy and chemotherapy resistance, respectively. Alpha particles are extraordinarily potent, short-ranged radiations with geometry uniquely suitable for selectively killing neovasculature. METHODOLOGY AND PRINCIPAL FINDINGS: Actinium-225 ((225)Ac)-E4G10, an alpha-emitting antibody construct reactive with the unengaged form of vascular endothelial cadherin, is capable of potent, selective killing of tumor neovascular endothelium and late endothelial progenitors in bone-marrow and blood. No specific normal-tissue uptake of E4G10 was seen by imaging or post-mortem biodistribution studies in mice. In a mouse-model of prostatic carcinoma, (225)Ac-E4G10 treatment resulted in inhibition of tumor growth, lower serum prostate specific antigen level and markedly prolonged survival, which was further enhanced by subsequent administration of paclitaxel. Immunohistochemistry revealed lower vessel density and enhanced tumor cell apoptosis in (225)Ac-E4G10 treated tumors. Additionally, the residual tumor vasculature appeared normalized as evident by enhanced pericyte coverage following (225)Ac-E4G10 therapy. However, no toxicity was observed in vascularized normal organs following (225)Ac-E4G10 therapy. CONCLUSIONS: The data suggest that alpha-particle immunotherapy to neovasculature, alone or in combination with sequential chemotherapy, is an effective approach to cancer therapy
    corecore