183 research outputs found

    Equine Rhinitis A Virus and Its Low pH Empty Particle: Clues Towards an Aphthovirus Entry Mechanism?

    Get PDF
    Equine rhinitis A virus (ERAV) is closely related to foot-and-mouth disease virus (FMDV), belonging to the genus Aphthovirus of the Picornaviridae. How picornaviruses introduce their RNA genome into the cytoplasm of the host cell to initiate replication is unclear since they have no lipid envelope to facilitate fusion with cellular membranes. It has been thought that the dissociation of the FMDV particle into pentameric subunits at acidic pH is the mechanism for genome release during cell entry, but this raises the problem of how transfer across the endosome membrane of the genome might be facilitated. In contrast, most other picornaviruses form ‘altered’ particle intermediates (not reported for aphthoviruses) thought to induce membrane pores through which the genome can be transferred. Here we show that ERAV, like FMDV, dissociates into pentamers at mildly acidic pH but demonstrate that dissociation is preceded by the transient formation of empty 80S particles which have released their genome and may represent novel biologically relevant intermediates in the aphthovirus cell entry process. The crystal structures of the native ERAV virus and a low pH form have been determined via highly efficient crystallization and data collection strategies, required due to low virus yields. ERAV is closely similar to FMDV for VP2, VP3 and part of VP4 but VP1 diverges, to give a particle with a pitted surface, as seen in cardioviruses. The low pH particle has internal structure consistent with it representing a pre-dissociation cell entry intermediate. These results suggest a unified mechanism of picornavirus cell entry

    New penicillin-producing Penicillium species and an overview of section Chrysogena

    Get PDF
    Species classified in Penicillium sect. Chrysogena are primary soil-borne and the most well-known members are P. chrysogenum and P. nalgiovense. Penicillium chrysogenum has received much attention because of its role in the production on penicillin and as a contaminant of indoor environments and various food and feedstuffs. Another biotechnologically important species is P. nalgiovense, which is used as a fungal starter culture for the production of fermented meat products. Previous taxonomic studies often had conflicting species circumscriptions. Here, we present a multigene analysis, combined with phenotypic characters and extrolite data, demonstrating that sect. Chrysogena consists of 18 species. Six of these are newly described here (P. allii-sativi, P. desertorum, P. goetzii, P. halotolerans, P. tardochrysogenum, P. vanluykii) and P. lanoscoeruleum was found to be an older name for P. aethiopicum. Each species produces a unique extrolite profile. The species share phenotypic characters, such as good growth on CYA supplemented with 5 % NaCl, ter- or quarterverticillate branched conidiophores and short, ampulliform phialides (<9 μm). Conidial colours, production of ascomata and ascospores, shape and ornamentation of conidia and growth rates on other agar media are valuable for species identification. Eight species (P. allii-sativi, P. chrysogenum, P. dipodomyis, P. flavigenum, P. nalgiovense, P. rubens, P. tardochrysogenum and P. vanluykii) produce penicillin in culture

    The Science Case for the Planet Formation Imager (PFI)

    Full text link
    Among the most fascinating and hotly-debated areas in contemporary astrophysics are the means by which planetary systems are assembled from the large rotating disks of gas and dust which attend a stellar birth. Although important work has already been, and is still being done both in theory and observation, a full understanding of the physics of planet formation can only be achieved by opening observational windows able to directly witness the process in action. The key requirement is then to probe planet-forming systems at the natural spatial scales over which material is being assembled. By definition, this is the so-called Hill Sphere which delineates the region of influence of a gravitating body within its surrounding environment. The Planet Formation Imager project (PFI) has crystallized around this challenging goal: to deliver resolved images of Hill-Sphere-sized structures within candidate planet-hosting disks in the nearest star-forming regions. In this contribution we outline the primary science case of PFI. For this purpose, we briefly review our knowledge about the planet-formation process and discuss recent observational results that have been obtained on the class of transition disks. Spectro-photometric and multi-wavelength interferometric studies of these systems revealed the presence of extended gaps and complex density inhomogeneities that might be triggered by orbiting planets. We present detailed 3-D radiation-hydrodynamic simulations of disks with single and multiple embedded planets, from which we compute synthetic images at near-infrared, mid-infrared, far-infrared, and sub-millimeter wavelengths, enabling a direct comparison of the signatures that are detectable with PFI and complementary facilities such as ALMA. From these simulations, we derive some preliminary specifications that will guide the array design and technology roadmap of the facility.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June 2014, Paper ID 9146-120, 13 pages, 3 Figure

    The last gasps of VY CMa: Aperture synthesis and adaptive optics imagery

    Full text link
    We present new observations of the red supergiant VY CMa at 1.25 micron, 1.65 micron, 2.26 micron, 3.08 micron and 4.8 micron. Two complementary observational techniques were utilized: non-redundant aperture masking on the 10-m Keck-I telescope yielding images of the innermost regions at unprecedented resolution, and adaptive optics imaging on the ESO 3.6-m telescope at La Silla attaining extremely high (~10^5) peak-to-noise dynamic range over a wide field. For the first time the inner dust shell has been resolved in the near-infrared to reveal a one-sided extension of circumstellar emission within 0.1" (~15 R_star) of the star. The line-of-sight optical depths of the circumstellar dust shell at 1.65 micron, 2.26 micron, and 3.08 micron have been estimated to be 1.86 +/- 0.42, 0.85 +/- 0.20, and 0.44 +/- 0.11. These new results allow the bolometric luminosity of VY~CMa to be estimated independent of the dust shell geometry, yielding L_star ~ 2x10^5 L_sun. A variety of dust condensations, including a large scattering plume and a bow-shaped dust feature, were observed in the faint, extended nebula up to 4" from the central source. While the origin of the nebulous plume remains uncertain, a geometrical model is developed assuming the plume is produced by radially-driven dust grains forming at a rotating flow insertion point with a rotational period between 1200-4200 years, which is perhaps the stellar rotational period or the orbital period of an unseen companion.Comment: 25 pages total with 1 table and 5 figures. Accepted by Astrophysical Journal (to appear in February 1999

    FMDV replicons encoding green fluorescent protein are replication competent

    Get PDF
    The study of replication of viruses that require high bio-secure facilities can be accomplished with less stringent containment using non-infectious 'replicon' systems. The FMDV replicon system (pT7rep) reported by Mclnerney et al. (2000) was modified by the replacement of sequences encoding chloramphenicol acetyl-transferase (CAT) with those encoding a functional L proteinase (Lpro) linked to a bi-functional fluorescent/antibiotic resistance fusion protein (green fluorescent protein/puromycin resistance, [GFP-PAC]). Cells were transfected with replicon-derived transcript RNA and GFP fluorescence quantified. Replication of transcript RNAs was readily detected by fluorescence, whilst the signal from replication-incompetent forms of the genome was >2-fold lower. Surprisingly, a form of the replicon lacking the Lpro showed a significantly stronger fluorescence signal, but appeared with slightly delayed kinetics. Replication can, therefore, be quantified simply by live-cell imaging and image analyses, providing a rapid and facile alternative to RT-qPCR or CAT assays

    Near and mid-IR sub-arcsecond structure of the dusty symbiotic star R Aqr

    Get PDF
    The results of a high-resolution interferometric campaign targeting the symbiotic long-period variable (LPV) R~Aqr are reported. With both near-infrared measurements on baselines out to 10m and mid-infrared data extending to 32m, we have been able to measure the characteristic sizes of regions from the photosphere of the LPV and its extended molecular atmosphere, out to the cooler circumstellar dust shell. The near-infrared data were taken using aperture masking interferometry on the Keck-I telescope and show R~Aqr to be partially resolved for wavelengths out to 2.2 microns but with a marked enlargement, possibly due to molecular opacity, at 3.1 microns. Mid-infrared interferometric measurements were obtained with the U.C. Berkeley Infrared Spatial Interferometer (ISI) operating at 11.15 microns from 1992 to 1999. Although this dataset is somewhat heterogeneous with incomplete coverage of the Fourier plane and sampling of the pulsation cycle, clear changes in the mid-infrared brightness distribution were observed, both as a function of position angle on the sky and as a function of pulsation phase. Spherically symmetric radiative transfer calculations of uniform-outflow dust shell models produce brightness distributions and spectra which partially explain the data, however limitations to this approximation are noted. Evidence for significant deviation from circular symmetry was found in the mid-infrared and more tentatively at 3.08 microns in the near-infrared, however no clear detection of binarity or of non-LPV elements in the symbiotic system is reported.Comment: Accepted to Astrophysical Journal. To appear in volume 534. 14 pages; 3 postscript figure

    Lazarus Syndrome - Challenges created by pediatric autoresuscitation

    Get PDF
    Pediatric autoresuscitation is extremely rare, with only 4 documented cases in the literature. The longest recorded time between stopping cardio pulmonary resuscitation (CPR) and return of spontaneous circulation is 2 minutes. We report a previously well 18-month-old who attended the emergency department after an unexplained cardiac arrest. After 10 cycles of CPR, resuscitation was stopped; 6 minutes later, the patient had a return of spontaneous circulation and was transferred to the pediatric intensive care unit. The patient remains alive but with significant neurological impairment. There are a variety of theories regarding the pathology of pediatric autoresuscitation. The most commonly accepted model is that there is a degree of autopositive end-expiratory pressure impending venous return as a consequence of vigorous ventilation during CPR. This case challenges clinicians to reassess our current definition of death and reaffirms the need for clearer guidelines surrounding the certification of death
    • …
    corecore