1,421 research outputs found

    Third-codon transversion rate-based _Nymphaea_ basal angiosperm phylogeny -- concordance with developmental evidence

    Get PDF
    Flowering plants (angiosperms) appeared on Earth rather suddenly approximately 130 million years ago and underwent a massive expansion in the subsequent 10-12 million years. Current molecular phylogenies have predominantly identified _Amborella_, followed by _Nymphaea_ (water lilies) or _Amborella_ plus _Nymphaea_, in the ANITA clade (_Amborella_, Nymphaeales, Illiciaceae, Trimeniaceae and Austrobaileyaceae) as the earliest angiosperm. However, developmental studies suggest that the earliest angiosperm had a 4-cell/4-nucleus female gametophyte and a diploid endosperm represented by _Nymphaea_, suggesting that _Amborella_, having an 8-cell/9-nucleus female gametophyte and a triploid endosperm, cannot be representative of the basal angiosperm. This evolution-development discordance is possibly caused by erroneous inference based on phylogenetic signals with low neutrality and/or high saturation. Here we show that the 3rd codon transversion (P3Tv), with high neutrality and low saturation, is a robust high-resolution phylogenetic signal for such divergences and that the P3Tv-based land plant phylogeny cautiously identifies _Nymphaea_, followed by _Amborella_, as the most basal among the angiosperm species examined in this study. This P3Tv-based phylogeny contributes insights to the origin of angiosperms with concordance to fossil and stomata development evidence

    Correlating BOD and COD in Paper Mill Effluent Streams

    Get PDF
    Biochemical oxygen demand (BODs) is a five-day test. Chemical oxygen demand (COD) is a two-hour test. Both measure the oxygen demand exhibited by organics in a wastewater sample. It was proposed that if a significant correlation exists between BODs and COD, the faster and simpler COD test could be substituted for the more commonly used BODs test. Three effluent streams were chosen to test: a pulp mill stream, a paper mill stream, and a combined effluent stream. The correlation that existed between BODs and COD in the combined effluent and paper mill streams were 0.90 and 0.92 respectively. A correlation of 1.00 would be a perfect linear correlation. The correlation of BODs to COD associated with the pulp mill stream was 0.72. These results can help a mill predict BODs in a short time allowing for the saving of money, man hours, and time. It will also provide the mill with soluble organic concentrations in their effluent streams on a regular basis

    Transcriptome analysis of response to drought in poplar interspecific hybrids.

    Get PDF
    To investigate the response of poplar hybrids to drought, leaves were collected from plants to which water was suspended for 8 and 13 days. After measuring the respective relative water content, RNAs were isolated from leaves of moderately and severely droughted plants and from control plants, and Illumina RNA sequencing was performed to analyze RNA synthesis in these tissues. Our data provide a resource (available at Gene Expression Omnibus database under GSE64044) to be employed for comparative analyses of drought response in different poplar species, with the long-term aim of developing strategies to improve plant productivity under drought

    MicroSyn: A user friendly tool for detection of microsynteny in a gene family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The traditional phylogeny analysis within gene family is mainly based on DNA or amino acid sequence homologies. However, these phylogenetic tree analyses are not suitable for those "non-traditional" gene families like microRNA with very short sequences. For the normal protein-coding gene families, low bootstrap values are frequently encountered in some nodes, suggesting low confidence or likely inappropriateness of placement of those members in those nodes.</p> <p>Results</p> <p>We introduce MicroSyn software as a means of detecting microsynteny in adjacent genomic regions surrounding genes in gene families. MicroSyn searches for conserved, flanking colinear homologous gene pairs between two genomic fragments to determine the relationship between two members in a gene family. The colinearity of homologous pairs is controlled by a statistical distance function. As a result, gene duplication history can be inferred from the output independent of gene sequences. MicroSyn was designed for both experienced and non-expert users with a user-friendly graphical-user interface. MicroSyn is available from: <url>http://fcsb.njau.edu.cn/microsyn/</url>.</p> <p>Conclusions</p> <p>Case studies of the microRNA167 genes in plants and Xyloglucan ndotransglycosylase/Hydrolase family in <it>Populus trichocarpa </it>were presented to show the utility of the software. The easy using of MicroSyn in these examples suggests that the software is an additional valuable means to address the problem intrinsic in the computational methods and sequence qualities themselves in gene family analysis.</p

    Fungal Endophytes of Populus trichocarpa Alter Host Phenotype, Gene Expression, and Rhizobiome Composition.

    Get PDF
    Mortierella and Ilyonectria genera include common species of soil fungi that are frequently detected as root endophytes in many plants, including Populus spp. However, the ecological roles of these and other endophytic fungi with respect to plant growth and function are still not well understood. The functional ecology of two key taxa from the P. trichocarpa rhizobiome, M. elongata PMI93 and I. europaea PMI82, was studied by coupling forest soil bioassays with environmental metatranscriptomics. Using soil bioassay experiments amended with fungal inoculants, M. elongata was observed to promote the growth of P. trichocarpa. This response was cultivar independent. In contrast, I. europaea had no visible effect on P. trichocarpa growth. Metatranscriptomic studies revealed that these fungi impacted rhizophytic and endophytic activities in P. trichocarpa and induced shifts in soil and root microbial communities. Differential expression of core genes in P. trichocarpa roots was observed in response to both fungal species. Expression of P. trichocarpa genes for lipid signaling and nutrient uptake were upregulated, and expression of genes associated with gibberellin signaling were altered in plants inoculated with M. elongata, but not I. europaea. Upregulation of genes for growth promotion, downregulation of genes for several leucine-rich repeat receptor kinases, and alteration of expression of genes associated with plant defense responses (e.g., jasmonic acid, salicylic acid, and ethylene signal pathways) also suggest that M. elongata manipulates plant defenses while promoting plant growth

    Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Auxin/Indole-3-Acetic Acid (Aux/IAA) and Auxin Response Factor (ARF) transcription factors are key regulators of auxin responses in plants. We identified the suites of genes in the two gene families in <it>Populus </it>and performed comparative genomic analysis with <it>Arabidopsis </it>and rice.</p> <p>Results</p> <p>A total of 35 <it>Aux/IAA </it>and 39 <it>ARF </it>genes were identified in the <it>Populus </it>genome. Comparative phylogenetic analysis revealed that several Aux/IAA and ARF subgroups have differentially expanded or contracted between the two dicotyledonous plants. Activator <it>ARF </it>genes were found to be two fold-overrepresented in the <it>Populus </it>genome. <it>PoptrIAA </it>and <it>PoptrARF </it>gene families appear to have expanded due to high segmental and low tandem duplication events. Furthermore, expression studies showed that genes in the expanded <it>PoptrIAA3 </it>subgroup display differential expression.</p> <p>Conclusion</p> <p>The present study examines the extent of conservation and divergence in the structure and evolution of <it>Populus Aux/IAA </it>and <it>ARF </it>gene families with respect to <it>Arabidopsis </it>and rice. The gene-family analysis reported here will be useful in conducting future functional genomics studies to understand how the molecular roles of these large gene families translate into a diversity of biologically meaningful auxin effects.</p
    • …
    corecore