53 research outputs found

    Construction of Fusion Protein for Enhanced Small RNA Loading to Extracellular Vesicles

    Get PDF
    Extracellular vesicles (EVs) naturally carry cargo from producer cells, such as RNA and protein, and can transfer these messengers to other cells and tissue. This ability provides an interesting opportunity for using EVs as delivery vehicles for therapeutic agents, such as for gene therapy. However, endogenous loading of cargo, such as microRNAs (miRNAs), is not very efficient as the copy number of miRNAs per EV is quite low. Therefore, new methods and tools to enhance the loading of small RNAs is required. In the current study, we developed fusion protein of EV membrane protein CD9 and RNA-binding protein AGO2 (hCD9.hAGO2). We show that the EVs engineered with hCD9.hAGO2 contain significantly higher levels of miRNA or shRNA (miR-466c or shRNA-451, respectively) compared to EVs that are isolated from cells that only overexpress the desired miRNA or shRNA. These hCD9.hAGO2 engineered EVs also transfer their RNA cargo to recipient cells more efficiently. We were not able to detect changes in gene expression levels in recipient cells after the EV treatments, but we show that the cell viability of HUVECs was increased after hCD9.hAGO2 EV treatments. This technical study characterizes the hCD9.hAGO2 fusion protein for the future development of enhanced RNA loading to EVs

    Peripheral inflammation preceeding ischemia impairs neuronal survival through mechanisms involving miR‐127 in aged animals

    Get PDF
    Envelliment; Inflamació; MicroARNEnvejecimiento; Inflamación; MicroARNAging; Inflammation; MicroRNAIschemic stroke, the third leading cause of death in the Western world, affects mainly the elderly and is strongly associated with comorbid conditions such as atherosclerosis or diabetes, which are pathologically characterized by increased inflammation and are known to influence the outcome of stroke. Stroke incidence peaks during influenza seasons, and patients suffering from infections such as pneumonia prior to stroke exhibit a worse stroke outcome. Earlier studies have shown that comorbidities aggravate the outcome of stroke, yet the mediators of this phenomenon remain obscure. Here, we show that acute peripheral inflammation aggravates stroke‐induced neuronal damage and motor deficits specifically in aged mice. This is associated with increased levels of plasma proinflammatory cytokines, rather than with an increase of inflammatory mediators in the affected brain parenchyma. Nascent transcriptomics data with mature microRNA sequencing were used to identify the neuron‐specific miRNome, in order to decipher dysregulated miRNAs in the brains of aged animals with stroke and co‐existing inflammation. We pinpoint a previously uninvestigated miRNA in the brain, miR‐127, that is highly neuronal, to be associated with increased cell death in the aged, LPS‐injected ischemic mice. Target prediction tools indicate that miR‐127 interacts with several basally expressed neuronal genes, and of these we verify miR‐127 binding to Psmd3. Finally, we report reduced expression of miR‐127 in human stroke brains. Our results underline the impact of peripheral inflammation on the outcome of stroke in aged subjects and pinpoint molecular targets for restoring endogenous neuronal capacity to combat ischemic stroke.This study was supported by Emil Aaltonen Foundation, Academy of Finland and Finnish Cultural Foundation

    Intracerebral overexpression of miR-669c is protective in mouse ischemic stroke model by targeting MyD88 and inducing alternative microglial/macrophage activation

    Get PDF
    Background Ischemic stroke is a devastating disease without a cure. The available treatments for ischemic stroke, thrombolysis by tissue plasminogen activator, and thrombectomy are suitable only to a fraction of patients and thus novel therapeutic approaches are urgently needed. The neuroinflammatory responses elicited secondary to the ischemic attack further aggravate the stroke-induced neuronal damage. It has been demonstrated that these responses are regulated at the level of non-coding RNAs, especially miRNAs. Methods We utilized lentiviral vectors to overexpress miR-669c in BV2 microglial cells in order to modulate their polarization. To detect whether the modulation of microglial activation by miR-669c provides protection in a mouse model of transient focal ischemic stroke, miR-669c overexpression was driven by a lentiviral vector injected into the striatum prior to induction of ischemic stroke. Results Here, we demonstrate that miR-669c-3p, a member of chromosome 2 miRNA cluster (C2MC), is induced upon hypoxic and excitotoxic conditions in vitro and in two different in vivo models of stroke. Rather than directly regulating the neuronal survival in vitro, miR-669c is capable of attenuating the microglial proinflammatory activation in vitro and inducing the expression of microglial alternative activation markers arginase 1 (Arg1), chitinase-like 3 (Ym1), and peroxisome proliferator-activated receptor gamma (PPAR-gamma). Intracerebral overexpression of miR-669c significantly decreased the ischemia-induced cell death and ameliorated the stroke-induced neurological deficits both at 1 and 3 days post injury (dpi). Albeit miR-669c overexpression failed to alter the overall Iba1 protein immunoreactivity, it significantly elevated Arg1 levels in the ischemic brain and increased colocalization of Arg1 and Iba1. Moreover, miR-669c overexpression under cerebral ischemia influenced several morphological characteristics of Iba1 positive cells. We further demonstrate the myeloid differentiation primary response gene 88 (MyD88) transcript as a direct target for miR-669c-3p in vitro and show reduced levels of MyD88 in miR-669c overexpressing ischemic brains in vivo. Conclusions Collectively, our data provide the evidence that miR-669c-3p is protective in a mouse model of ischemic stroke through enhancement of the alternative microglial/macrophage activation and inhibition of MyD88 signaling. Our results accentuate the importance of controlling miRNA-regulated responses for the therapeutic benefit in conditions of stroke and neuroinflammation.Peer reviewe

    Intracerebral overexpression of miR-669c is protective in mouse ischemic stroke model by targeting MyD88 and inducing alternative microglial/macrophage activation

    Get PDF
    Background Ischemic stroke is a devastating disease without a cure. The available treatments for ischemic stroke, thrombolysis by tissue plasminogen activator, and thrombectomy are suitable only to a fraction of patients and thus novel therapeutic approaches are urgently needed. The neuroinflammatory responses elicited secondary to the ischemic attack further aggravate the stroke-induced neuronal damage. It has been demonstrated that these responses are regulated at the level of non-coding RNAs, especially miRNAs. Methods We utilized lentiviral vectors to overexpress miR-669c in BV2 microglial cells in order to modulate their polarization. To detect whether the modulation of microglial activation by miR-669c provides protection in a mouse model of transient focal ischemic stroke, miR-669c overexpression was driven by a lentiviral vector injected into the striatum prior to induction of ischemic stroke. Results Here, we demonstrate that miR-669c-3p, a member of chromosome 2 miRNA cluster (C2MC), is induced upon hypoxic and excitotoxic conditions in vitro and in two different in vivo models of stroke. Rather than directly regulating the neuronal survival in vitro, miR-669c is capable of attenuating the microglial proinflammatory activation in vitro and inducing the expression of microglial alternative activation markers arginase 1 (Arg1), chitinase-like 3 (Ym1), and peroxisome proliferator-activated receptor gamma (PPAR-gamma). Intracerebral overexpression of miR-669c significantly decreased the ischemia-induced cell death and ameliorated the stroke-induced neurological deficits both at 1 and 3 days post injury (dpi). Albeit miR-669c overexpression failed to alter the overall Iba1 protein immunoreactivity, it significantly elevated Arg1 levels in the ischemic brain and increased colocalization of Arg1 and Iba1. Moreover, miR-669c overexpression under cerebral ischemia influenced several morphological characteristics of Iba1 positive cells. We further demonstrate the myeloid differentiation primary response gene 88 (MyD88) transcript as a direct target for miR-669c-3p in vitro and show reduced levels of MyD88 in miR-669c overexpressing ischemic brains in vivo. Conclusions Collectively, our data provide the evidence that miR-669c-3p is protective in a mouse model of ischemic stroke through enhancement of the alternative microglial/macrophage activation and inhibition of MyD88 signaling. Our results accentuate the importance of controlling miRNA-regulated responses for the therapeutic benefit in conditions of stroke and neuroinflammation.Peer reviewe

    Nuclear microRNA-466c regulates Vegfa expression in response to hypoxia

    Get PDF
    MicroRNAs are well characterized in their role in silencing gene expression by targeting 3ÂŽ-UTR of mRNAs in cytoplasm. However, recent studies have shown that miRNAs have a role in the regulation of genes in the nucleus, where they are abundantly located. We show here that in mouse endothelial cell line (C166), nuclear microRNA miR-466c participates in the regulation of vascular endothelial growth factor a (Vegfa) gene expression in hypoxia. Upregulation of Vegfa expression in response to hypoxia was significantly compromised after removal of miR-466c with CRISPR-Cas9 genomic deletion. We identified a promoter-associated long non-coding RNA on mouse Vegfa promoter and show that miR-466c directly binds to this transcript to modulate Vegfa expression. Collectively, these observations suggest that miR-466c regulates Vegfa gene transcription in the nucleus by targeting the promoter, and expands on our understanding of the role of miRNAs well beyond their canonical role

    A New Gene Therapy Approach for Cardiovascular Disease by Non-coding RNAs Acting in the Nucleus

    No full text
    This review discusses recent developments in the use of non-coding RNAs (ncRNAs) for the regulation of therapeutically relevant genes, with special focus on applications for the treatment of cardiovascular diseases. The interest in using ncRNAs as therapeutics has steadily increased since the discovery of RNA interference. During the last decade it has become evident that these RNAs, delivered either as oligos or expressed as small hairpin RNAs (shRNAs) from vectors, can either upregulate (transcriptional gene activation, TGA) or downregulate (transcriptional gene silencing, TGS) gene expression, typically inducing epigenetic changes in their target sites in the chromatin. Also, the important role of naturally occurring long non-coding RNAs (lncRNAs) has been recently discovered and will likely provide new insights into cardiovascular pathology and provide new treatment strategies based on the manipulation of their expression. In this review, we discuss the possibility of using ncRNAs for activating or silencing therapeutically relevant genes, such as VEGF-A, for the treatment of cardiovascular disease

    Construction of Fusion Protein for Enhanced Small RNA Loading to Extracellular Vesicles

    No full text
    Extracellular vesicles (EVs) naturally carry cargo from producer cells, such as RNA and protein, and can transfer these messengers to other cells and tissue. This ability provides an interesting opportunity for using EVs as delivery vehicles for therapeutic agents, such as for gene therapy. However, endogenous loading of cargo, such as microRNAs (miRNAs), is not very efficient as the copy number of miRNAs per EV is quite low. Therefore, new methods and tools to enhance the loading of small RNAs is required. In the current study, we developed fusion protein of EV membrane protein CD9 and RNA-binding protein AGO2 (hCD9.hAGO2). We show that the EVs engineered with hCD9.hAGO2 contain significantly higher levels of miRNA or shRNA (miR-466c or shRNA-451, respectively) compared to EVs that are isolated from cells that only overexpress the desired miRNA or shRNA. These hCD9.hAGO2 engineered EVs also transfer their RNA cargo to recipient cells more efficiently. We were not able to detect changes in gene expression levels in recipient cells after the EV treatments, but we show that the cell viability of HUVECs was increased after hCD9.hAGO2 EV treatments. This technical study characterizes the hCD9.hAGO2 fusion protein for the future development of enhanced RNA loading to EVs

    Bright ultrashort echo time SWIFT MRI signal at the osteochondral junction is not located in the calcified cartilage

    No full text
    In this study, we aimed to precisely localize the hyperintense signal that is generated at the osteochondral junction when using ultrashort echo time magnetic resonance imaging (MRI) and to investigate the osteochondral junction using sweep imaging with Fourier transformation (SWIFT) MRI. Furthermore, we seek to evaluate what compositional properties of the osteochondral junction are the sources of this signal. In the study, we obtained eight samples from a tibial plateau dissected from a 68-year-old male donor, and one additional osteochondral sample of bovine origin. The samples were imaged using high-resolution ultrashort echo time SWIFT MRI and microcomputed tomography (ÎŒCT) scans. Localization of the bright signal in the osteochondral junction was performed using coregistered data sets. Potential sources of the signal feature were examined by imaging the bovine specimen with variable receiver bandwidths and by performing variable flip angle T1 relaxation time mapping. The results of the study showed that the hyperintense signal was found to be located entirely in the deep noncalcified articular cartilage. The intensity of this signal at the interface varied between the specimens. Further tests with bovine specimens indicated that the imaging bandwidth and T1 relaxation affect the properties of the signal. Based on the present results, the calcified cartilage has low signal intensity even in SWIFT imaging. Concomitantly, it appears that the bright signal seen in ultrashort echo time imaging resides within the noncalcified cartilage. Furthermore, the most likely sources of this signal are the rapid T1 relaxation of the deep cartilage and the susceptibility-induced effects arising from the calcified tissues
    • 

    corecore