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Abstract

Background: Ischemic stroke is a devastating disease without a cure. The available treatments for ischemic stroke,
thrombolysis by tissue plasminogen activator, and thrombectomy are suitable only to a fraction of patients and
thus novel therapeutic approaches are urgently needed. The neuroinflammatory responses elicited secondary to
the ischemic attack further aggravate the stroke-induced neuronal damage. It has been demonstrated that these
responses are regulated at the level of non-coding RNAs, especially miRNAs.

Methods: We utilized lentiviral vectors to overexpress miR-669¢ in BV2 microglial cells in order to modulate their
polarization. To detect whether the modulation of microglial activation by miR-669¢ provides protection in a mouse
model of transient focal ischemic stroke, miR-669¢ overexpression was driven by a lentiviral vector injected into the
striatum prior to induction of ischemic stroke.
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Results: Here, we demonstrate that miR-669¢-3p, a member of chromosome 2 miRNA cluster (C2MC), is induced upon
hypoxic and excitotoxic conditions in vitro and in two different in vivo models of stroke. Rather than directly regulating
the neuronal survival in vitro, miR-669c is capable of attenuating the microglial proinflammatory activation in vitro and

conditions of stroke and neuroinflammation.

inducing the expression of microglial alternative activation markers arginase 1 (Arg1), chitinase-like 3 (Ym1), and
peroxisome proliferator-activated receptor gamma (PPAR-y). Intracerebral overexpression of miR-669c significantly
decreased the ischemia-induced cell death and ameliorated the stroke-induced neurological deficits both at 1 and 3
days post injury (dpi). Albeit miR-669c overexpression failed to alter the overall Ibal protein immunoreactivity, it
significantly elevated Arg1 levels in the ischemic brain and increased colocalization of Arg1 and Ibal. Moreover, miR-
669¢ overexpression under cerebral ischemia influenced several morphological characteristics of Ibal positive cells. We
further demonstrate the myeloid differentiation primary response gene 88 (MyD88) transcript as a direct target for miR-
669¢-3p in vitro and show reduced levels of MyD88 in miR-669¢ overexpressing ischemic brains in vivo.

Conclusions: Collectively, our data provide the evidence that miR-669c-3p is protective in a mouse model of ischemic
stroke through enhancement of the alternative microglial/macrophage activation and inhibition of MyD8&8 signaling.
Our results accentuate the importance of controlling miRNA-regulated responses for the therapeutic benefit in
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Background

MicroRNAs (miRNAs) are a class of small, non-coding
RNA molecules of approximately 22 nucleotides in length
that function mainly by post-translational repression or
degradation of target mRNAs by binding to their 3" un-
translated regions [1, 2]. The domain at the 5" end of the
miRNA molecule that includes nucleotide position from 2
to 7 is important for mRNA target recognition and has
been defined as the miRNA seed. However, miRNAs func-
tion is not limited to the classical mechanism of post-
translational suppression, as some of these molecules have
been shown to target promoter or enhancer regions and
thereby control gene expression [3-5].

Several studies have indicated that ischemic stroke al-
ters the expression of multiple miRNAs both in mice
and in humans with the capacity to alter cellular stress
responses [6—-10]. In addition, stroke-induced neuroin-
flammatory events, especially microglial responses, have
been shown to be regulated at the level of miRNAs [11-
13]. However, only a handful of studies have demon-
strated that these miRNAs can be targeted for thera-
peutic benefit in the models of cerebral ischemia [12, 14,
15]. Thus, the knowledge on the role of miRNAs in
regulation of the stroke-induced neuroinflammatory re-
sponses is still limited.

C2MC, also known as miR-297-669 cluster, is derived
from intron 10 of the Polycomb group gene sex comb
on the midleg with four MBT domains-2 (Sfmbt2) on
mouse chromosome 2 [16]. MiRNA members of this
cluster have been shown to be upregulated upon differ-
ent harmful stimuli such as nutrient depletion condi-
tions in Chinese hamster ovary (CHO) cells [17, 18],
acetaminophen-induced liver injury [19] and liver aging
in mice [20], sodium arsenite exposure in P19 mouse

embryonal carcinoma cells [21] and in the ischemic cor-
tex 24 h after transient middle cerebral artery occlusion
(tMCAo) in rats [22].

Since some members of miR-297-669 cluster are regu-
lated under various stress conditions including glucose
deprivation or cerebral ischemia, the aim of this study
was to elucidate how a member of C2MC, miR-669c, is
implicated in the pathology of ischemic stroke, and to
evaluate the potential role of this miRNA in the regula-
tion of stroke-induced neuroinflammatory events. Here,
we show that miR-669c-3p is induced upon brain ische-
mia, its intracerebral overexpression modulates micro-
glial/macrophage activation and it directly targets the
myeloid differentiation primary response gene 88
(MyD88), the canonical adaptor protein implicated in
toll-like receptor (TLR) and IL-1 signaling, critical in
mediating innate immune responses. Lentiviral vector-
mediated overexpression of miR-669¢ was protective in
a mouse model of tMCAo through miR-669c-mediated
suppression of proinflammatory responses and concomi-
tant enhancement of microglial/macrophage alternative
activation. Based on our data, we propose that miR-
669c-3p overexpression represents a novel therapeutic
approach for the treatment of cerebral ischemia.

Methods

Primary cortical neuron cultures and glutamate
excitotoxicity assay

Primary cortical neuron cultures were prepared from
C57BL/6] embryonic day 15 embryos as described in
Malm et al. [23]. Briefly, cortices were dissected and the
tissue was dissociated with trypsin for 15 min at 37°C
(0.0125%, Sigma-Aldrich, St. Louis, USA). Isolated neu-
rons were seeded at a density of 125 x 10> cells/well on
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48-well or 1.8 x 10° cells/well on 6-well plate format
pre-coated with poly-D-lysine (Sigma-Aldrich, St. Louis,
USA) in complete neurobasal media containing 2% B27
supplement, 500 uM L-glutamine and 10 pg/ml gentamy-
cin (all reagents ThermoFisher Scientific, Waltham,
USA). On 5th day in vitro (DIV) after seeding 50% of
the media was changed and the cultures were used for
experiments on 6 DIV. Cells were treated with 400 uM
glutamate (Sigma-Aldrich, St. Louis, USA) for 24 h prior
to the measurements of cell viability by the MTT assay
or RNA isolation.

Primary microglia and astrocyte cultures

Primary microglial cultures were prepared from C57BL/6
] neonatal mice of 0-3 postnatal days as described else-
where [23]. Briefly, the mice were sacrificed by decapita-
tion and the brains were dissected. The tissue was
mechanically dissociated and incubated in DMEM/F-12
supplemented with 1% penicillin/streptomycin and 0.05%
trypsin-EDTA (all ThermoFisher Scientific, Waltham,
USA). Trypsin activity was inactivated with complete
media DMEM/F-12 containing 10% heat-inactivated fetal
bovine serum (iFBS) and 1% penicillin/streptomycin (all
ThermoFisher Scientific, Waltham, USA), the tissue was
homogenized and plated on 15cm diameter cell culture
dishes and left at culture at 37 °C, 5% CO, for 3 weeks.
Thereafter, the astrocyte layer from mixed glial culture
was trypsinized, collected, and seeded on poly-L-lysine
(Sigma-Aldrich, St. Louis, USA) pre-coated T75 flasks.
Remaining microglia were collected and directly plated on
48-well or 6-well plate format at the density of 125 x 10
cells/well and 1 x 10° cells/well, respectively.

N2a cell cultures and oxygen-glucose deprivation/
reoxygenation (OGD/R)

Mouse Neuro2a (N2a) cell line was seeded at a density
of 37.5 x 10° cells/well on 48-well or 3 x 10° cells/well
on 6-well plate format in complete DMEM with
GlutaMAX-1 containing D-glucose (25 mM) and sodium
pyruvate (1 mM) supplemented with 10% iFBS and 1%
penicillin-streptomycin (all reagents ThermoFisher Sci-
entific, Waltham, USA). For the OGD/R exposures, 24 h
after plating the cells, media were replaced with DMEM
depleted from glucose and sodium pyruvate but other-
wise supplemented as the standard culture media (Ther-
moFisher Scientific, Waltham, USA). For induction of
hypoxia, the cells were incubated in the hypoxia cham-
ber in 1% O, and 5% CO, (ProOx C21, Biospherix Ltd.,
Parish, USA) for 1, 2, or 3 h, after which the media was
changed to complete DMEM and cells returned into the
normal incubator for 24 h reoxygenation. The control
plates were treated similarly, but instead maintained in
high glucose DMEM media in a regular CO, incubator.
Passages 2-10 were used for the experiments. Cell line
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was negatively tested for mycoplasma with MycoAlert
Mycoplasma Detection Kit (Lonza, Basel, Switzerland).

BV2 microglia

Mouse microglial BV2 cells were seeded at a density of 3
x 10° cells/well on 6-well plate format in complete
RPMI-1640 media (Sigma-Aldrich, St. Louis, USA) sup-
plemented with 1% GlutaMAX, 10% iFBS, and 5 pg/ml
gentamycin (all reagents ThermoFisher Scientific, Wal-
tham, USA). The cells were used for the experiments 24
h post seeding. BV2 cells were treated with lipopolysac-
charide (LPS #L2630, serotype O111:B4, Sigma-Aldrich,
St. Louis, USA), 20 ng/ml or mouse recombinant inter-
leukin 4 (IL-4, PeproTech, Rocky Hill, USA), or 20 ng/
ml IFN-y in complete media for 24 h. Passages 2-10
were used for the experiments. Cell line was negatively
tested for mycoplasma with MycoAlert Mycoplasma De-
tection Kit (Lonza, Basel, Switzerland).

Lentiviral constructs

Pre-miR-669c¢ hairpin together with its downstream and
upstream flanking genomic sequence of 258 bp in length
was cloned into third-generation human immunodefi-
ciency virus 1 (HIV-1)-based LV-PGK-GFP-U6-miRNA
vector. Control vector contained only a green fluores-
cent protein (GFP) sequence. Vectors were prepared by
standard calcium phosphate transfection method in 293
T cells as described previously [24]. Lentiviral constructs
used in this study were produced by the BioCenter Kuo-
pio National Virus Vector Laboratory in Kuopio,
Finland.

Lentiviral vector transduction in cell cultures

N2a or BV2 cells were seeded at a density of 12 x 10*
cells/well on 12-well plate format and the lentiviral vec-
tor transduction was performed 24 h after seeding the
cells. Lentiviral vectors LV1-GFP (control) or LV1-miR-
669c were added into the fresh cell culture media to ob-
tain a multiplicity of infection (MOI) of 30. Transduc-
tion was performed for 24h after which the media
containing the lentiviral particles were removed, and the
cells visualized under a fluorescent microscope (Carl
Zeiss AG, Jena, Germany) to confirm all (99-100%) the
transduced cells from both groups were expressing GFP.
In addition, GFP expressing cells from both of the trans-
duced groups were sorted with BD FACSAria III to es-
tablish the cell lines stably expressing GPF (control) or
GFP and miR-669c.

Permanent middle cerebral artery occlusion (pMCAo0) and
transient middle cerebral artery occlusion (tMCAo) in
mice

To evaluate the levels of miR-669c expression in ische-
mic conditions in vivo, we utilized two different mouse
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models of ischemic stroke, the pMCAo and tMCAo. For
pMCAo, a total of 15 three-to-six-month-old Balb/
cOlaHsd male mice (Harlan Laboratories B.V., An Ven-
rey, Netherlands) were subjected to pMCAo as described
before [25]. Briefly, for anesthesia induction, the mice
were anesthetized with 5% isoflurane in 30% O,/70%
N,O and during the surgery isoflurane was maintained
at 2%. Temperature of the animals was maintained at 37
+ 0.5°C by a thermostatically controlled system con-
nected to a heating blanket and a rectal probe (Harvard
apparatus; PanLab, Cornella, Spain). Incision was made
between the ear and the eye to expose the temporal
muscle, which thereafter was moved aside. Approxi-
mately, a 1-mm hole was drilled on the bone under the
muscle to expose the MCA. The dura was removed, the
artery gently lifted using forceps, and occluded with a
thermocoagulator (Aaron Medical Industries Inc., Clear-
water, USA). MCA occlusion was confirmed by cutting
the artery, then the temporal muscle was repositioned,
and the skin was sutured. The mice were moved to their
home cages to recover from the surgery. The animals
were sacrificed either 1 or 3 days post ischemia (dpi) for
the evaluation of miR-669-3p expression (N = 7 per
group for 1 dpi and N = 8 per group for 3 dpi). To in-
duce tMCAo, the intraluminal middle cerebral artery oc-
clusion model was used as described previously [26].
The animals were initially anesthetized with 5% iso-
flurane in 30% O,/70% N,O, while the surgical
anesthesia ~was maintained at 2% isoflurane.
Temperature of the animals was maintained at 37 +
0.5°C by a homeothermic control system connected
to a heating blanket and a rectal probe (Harvard ap-
paratus; PanLab, Cornella, Spain). For tMCAo surgery,
a midline neck incision was made and the left com-
mon carotid artery (CCA) was ligated proximally to
the bifurcation of the internal carotid artery (ICA)
and external carotid artery (ECA). Then the left ECA
was isolated, ligated, and a suture was made around
the ICA. Subsequently, a small cut was made in the
CCA and a 20 mm silicone intraluminal monofilament
with a diameter of 0.21 + 0.02 mm (#602156PK10Re,
Doccol Corporation, USA) was introduced through
the incision and inserted further until a slight resist-
ance was felt, confirming the middle cerebral artery
(MCA) occlusion. An additional suture around the
ICA was made to fix the filament in the correct pos-
ition. After 45min of the occlusion time, during
which the anesthesia was maintained at 1% isoflurane,
the filament was withdrawn, and the ICA was ligated.
In the sham-operated animals, the occluding filament
was inserted only 5 mm above the carotid bifurcation.
Analgesic buprenorphine (Temgesic, Schering-Plough,
Belgium) was administered once in the concentration
of 0.03mg/kg IP immediately after the surgery. The
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mice were transferred to a heated recovery box for 2
h. After that, animals received water-softened food
pellets to facilitate their feeding. A total number of
54 four-month-old C57BL/6] male mice were used.
The animals were sacrificed either 1 or 3 days post is-
chemia (dpi) for the evaluation of the expression of
miR-669-3p (N = 3 per group for 1 dpi and N = 3
per group for 3 dpi).

Intracerebral lentiviral vector injections

To evaluate whether lentivirally driven miR-669c overex-
pression provides protection against tMCAo in mice,
C57BL/6] males were intrastriatally injected with lenti-
viral vector encoding for miR-669¢ or control GFP vec-
tor. The tMCAo model of ischemic stroke was chosen
since it produces cortico-striatal lesion, whereas pMCAo
leads to strictly cortical lesion and lentiviral vector injec-
tions were easier to perform into the striatum rather
than into the cortex. Briefly, three-month-old C57BL/6]
male mice were randomized into four treatment groups
using GraphPad QuickCalcs (www.graphpad.com/quick-
calcs/, GraphPad Software, San Diego, CA, USA): sham-
or tMCAo-operated animals injected with either LV1-
GFP or LV1-miR-669c. Animals were initially anesthe-
tized by 5% isoflurane in 30% O,/70% N,O and placed
on a heating pad (Harvard apparatus, PanLab, Cornella,
Spain) connected with a rectal probe to maintain the
body temperature at 37 + 0.5 °C. The surgical anesthesia
was maintained using 2% isoflurane and the mouse head
was fixed in a stereotaxic apparatus (Kopf Instruments,
Tujunga, USA). Thereafter, a burr hole was drilled 1.8
mm left lateral to the sagittal suture and 0.4 mm poster-
ior to the bregma. A blunt needle of a 10 ul Hamilton
syringe was inserted 2.9 mm deep into the striatum
(caudate putamen) under the cortex. Depending on the
group, 1 pul of LV1-GFP or LV1-miR-669c, both contain-
ing 2.28 x 10° transducing units (TU) per ml, was
injected into the caudate putamen at a rate of 0.2 pl/min
using a micro-infusion pump (Harvard Apparatus, Hol-
liston, USA). To allow the pressure equilibration and to
prevent backflow of the injected LV suspension, the nee-
dle was retracted 10 min post injection, then the hole
was sealed with bone wax, and the scalp wound was
closed with Ethilon nylon sutures (Ethicon Inc., USA).
For the post-surgery analgesia buprenorphine solution
was injected intraperitoneally (IP) at 0.03 mg/kg (Temge-
sic, Schering-Plough, Belgium). Three weeks after the
lentiviral vector injections the mice were subjected to
tMCAo as described above. Surgeries were performed as
blinded to the study groups. A total number of 54 three-
month-old C57BL/6] male mice were used (N = 11 in
sham-operated animals, N = 18 for LV1-GFP, and N =
18 LV1-miR-669c stroke groups). The mice were sacri-
ficed at 3 dpi for further analyses.


http://www.graphpad.com/quickcalcs/
http://www.graphpad.com/quickcalcs/

Kolosowska et al. Journal of Neuroinflammation (2020) 17:194

Behavioral testing with composite neuroscore

At 1 and 3 dpi mice which underwent tMCAo were
scored for the neurological function according to general
and focal neurological scale as previously described by
Clark et al. [27]. Briefly, for the general assessment, the
condition of fur, ears, eyes, posture, spontaneous activity
(scored between 0 and 4), and possible epileptic behavior
(score 0-12) were determined. In this scoring, 0 meant
the animal was displaying normal, healthy behavior and
4 or 12 indicated very severe neurological deficits. In the
scoring for focal deficits the body symmetry, gait, climb-
ing ability on the 45° angle grip surface, circling behav-
ior, front limb symmetry, compulsory circling, as well as
whisker and ear response were assessed on a 0-4 scale.
In this test score, 0 corresponded to no deficits and 4 in-
dicated severe impairment. Behavioral tests were per-
formed as blinded to the study groups (N = 11 in sham-
operated animals, N = 18 for LV1-GFP, and N = 18
LV1-miR-669c stroke groups).

Magnetic resonance imaging (MRI)

MRI was performed at 1 and 3 dpi in the mice anesthe-
tized with 1.8% isoflurane in 30% O,/70% N,O, to deter-
mine the lesion volume using a horizontal 9.4 T Oxford
NMR 400 magnet (Oxford instrument PLC, Abington,
UK) interfaced with Agilent Direct Drive console as previ-
ously described [25]. Multi-slice T2-weighted images were
acquired with echo time/repetition time of 40 ms/3000
ms, matrix size 128 x 256, field of view 19.2 x 19.2 mm?,
slice thickness 0.8 mm, and number of slices 12. Images
were analyzed using the Aedes software (Kuopio, Finland)
for MatLab program (Math-works, Natick, USA). The fol-
lowing formula was used to calculate the lesion volume:
Lesion volume = (volume of contralateral hemisphere—(-
volume of ipsilateral hemisphere—volume of the lesion))/
volume of contralateral hemisphere, as previously de-
scribed [28]. The lesion volume is expressed as percent-
age. Analyses were performed as blinded to the study
groups (N = 10 for LV1-GFP and N = 11 LV1-miR-669¢
stroke groups).

Immunohistochemistry

Anesthetized mice were perfused transcardially with
cold heparinized (2500 IU/l; Heparin LEO 5000 IU/ml,
Leo Pharma A/S, Ballerup, Denmark) saline, their
brains were dissected and fixed in 4% paraformalde-
hyde solution in 0.1 M phosphate buffer (PB) pH7.4.
After 18-20 h of postfixation, the brains were cryopro-
tected in 30% sucrose in PB for 48 h and frozen in li-
quid nitrogen. Thereafter, the brains were stored in
-70°C until cryosectioning. Six 20 um coronal brain
sections each 400 um apart were cut using a cryostat
(Leica Microsystems, Wetzlar, Germany), collected on
superfrost microscope slides (ThermoFisher Scientific,
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Waltham, USA) and stored at -70°C until analysis.
After washing with phosphate-buffered saline (PBS)
pH 7.4 and PBST containing 0.05% Tween-20 (Sigma-
Aldrich, St. Louis, USA), sections were blocked by 1h
incubation in 10% normal goat or rabbit serum (NGS
or NRS; Vector Laboratories Ltd., Burlingame, USA).
The following primary antibodies were incubated
overnight at room temperature (RT): rabbit anti-Ibal
(ionized calcium-binding adapter molecule 1, dilution
1:250; Wako PureChemical Industries Ltd., Tokyo,
Japan), goat anti-Argl (dilution 1:300; Santa Cruz
Biotechnology, Dallas, USA), rat anti-CD45 (leukocyte
common antigen, dilution 1:200; Bio-Rad, Hercules,
USA), and rat anti-MyD88 (dilution 1:100; R&D Sys-
tems, Minneapolis, USA) in 5% NGS or NRS. For
double IHC stainings, antibodies Ibal and Argl, and
Argl together with CD45 were used. For antigen re-
trieval prior to incubation with primary antibodies,
the sections were incubated for 1h in preheated
(92°C) 10 mM citrate buffer, pH 6.0. After washing in
PBST, the sections were incubated with Alexa Fluor
488, 568, or 647 secondary antibody (dilution 1:500;
ThermoFisher Scientific, Waltham, USA) for 2h at
RT, washed again, air dried, and mounted in Vecta-
shield with DAPI (Vector Laboratories Ltd., Burlin-
game, USA). Negative controls were included in
parallel sessions, following the same procedures, ex-
cept for the incubation with primary antibodies. For
the analyses, entire sections were imaged with x 5
magnification on Zeiss Axio Imager 2 coupled to
Axiocam digital camera and using the Zen software
(all Carl Zeiss AG, Jena, Germany). The confocal im-
ages were acquired from ipsilateral striatum (caudate
putamen) under x 20 or x 40 magnification with
Zeiss Axio Observer with Zeiss LSM 800 Airyscan
confocal module (Carl Zeiss AG, Jena, Germany). Im-
munoreactivities were quantified using the Image]
software (National Institute of Health, USA) and mea-
sured as the relative immunoreactive area for Ibal,
Argl, CD45, or MyD88. For analysis of the propor-
tion of Argl® to round in shape, CD45" cells, the x
20 confocal images were taken from three slices per
animal, from the ipsilateral striatum area with the
highest observed Argl immunoreactivity. Colocaliza-
tion of Ibal and Argl was quantified from x 20
confocal images using the Image] software (National
Institute of Health, USA) with JACoP plugin, as de-
scribed elsewhere [29]. Pearson’s correlation coeffi-
cient, representing relationship between Ibal and
Argl channel intensity distribution, and Mander’s
overlap coefficient M2, describing the fraction of
Argl® cells that colocalize with Ibal™ cells, were cal-
culated from four slices per animal using threshold
values of 50 for Argl and 100 for Ibal
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immunoreactivities, respectively. Analyses were per-
formed as blinded to the study groups (N = 3 in
sham or N = 5-6 in each stroke group).

Fluorescent in situ hybridization

The localization of miR-669c-3p in the brains of LV1-
GFP and LV1-miR-669c injected mice was evaluated by
FISH using ViewRNA miRNA ISH Cell Assay Kit (Ther-
moFisher Scientific, Waltham, USA) according to manu-
facturer’s protocol with modifications. Briefly, the
sections were washed with PBS, incubated in preheated
10 mM citrate buffer pH 6.0 for antigen retrieval, cross-
linked with EDC solution and permeabilized with Deter-
gent Solution QC, followed by target hybridization, sig-
nal amplification, and detection. Negative controls were
included in parallel sessions following the same proce-
dures, except for the incubation with miR-669c-3p spe-
cific probe. Thereafter, sections were incubated with
primary antibody anti-Ibal and then secondary antibody
Alexa Fluor 647 as described above. Entire sections were
imaged with x 10 magnification on Zeiss Axio Imager 2
coupled to Axiocam digital camera and using the Zen
software (all Carl Zeiss AG, Jena, Germany).

Microglial/macrophage (Iba1 positive) cell morphology
analyses

The morphological analysis of Ibal expressing cells was
done at 3 dpi as previously described [30] with some
modifications. Briefly, the cell area, perimeter, area/per-
imeter ratio, compactness, solidity, eccentricity, Equiv-
Diameter, circularity, and roundness were measured
using the Image] software (National Institute of Health,
USA) with Analyze particles command. The images for
analysis were captured under x 40 magnification with
Zeiss Axio Imager 2 coupled to Axiocam digital camera
and using the Zen software (all Carl Zeiss AG, Jena,
Germany).

Cytokine secretion measurements

Prior to transcardial perfusion, a 300 pL blood sample
for isolation of plasma was withdrawn directly from the
heart right ventricle. Buffered 129 mM sodium citrate
was used as an anticoagulant in the volume ratio 1:9 of
anticoagulant to blood. Collected blood samples were
immediately centrifuged at 1500g for 15min, and
plasma supernatants were additionally spun down at 13,
000 g for 2 min to remove any trace of platelets. Plasma
samples were aliquoted and stored at —70 °C until ana-
lysis. Following the dissection of the brains, the contra-
and ipsilateral hemispheres were snap frozen in liquid
nitrogen and then homogenized in cold lysis buffer con-
taining 20mM Tris pH7.5, 250 mM sucrose, 5mM
EDTA and 10mM EGTA, prepared in nuclease-free
water with complete protease and phosphatase inhibitors
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cocktail (Sigma-Aldrich, St. Louis, USA). Half of the
homogenate was processed for protein isolation and the
other half for RNA isolation. The cytometric bead array
(CBA) mouse inflammation kit (BD Biosciences, Frank-
lin Lakes, NJ) was used to analyze the levels of IL-6, IL-
10, MCP-1, IFN-y, TNF-q, and IL-12p70 in mouse brain
homogenates, plasma samples, and cell culture superna-
tants according to manufacturer’s instructions. Data was
acquired using CytoFLEX S (Beckman Coulter, Indian-
apolis, USA) and analyzed by FCAP Array software (Soft
Flow Hungary Ltd, Pécs, Hungary). Total protein con-
centrations were determined by BCA Protein Assay Kit
(Pierce, Rockford, USA), and the results were used to
normalize the CBA data.

Quantitative real-time PCR (qPCR) analysis of mRNA levels
Total RNA was isolated from cell cultures using the mir-
Vana miRNA Isolation Kit (ThermoFisher Scientific,
Waltham, USA). The concentration and purity of RNA
samples were determined using NanoDrop 2000
(Thermo Fisher Scientific). Reverse transcription was
performed with 500 ng of total RNA, maxima reverse
transcriptase, random hexamer primers, and dNTPs in
the presence of ribonuclease inhibitor (all reagents Ther-
moFisher Scientific, Waltham, USA). The final ¢cDNA
concentration used for the gene expression analyses was
2.5 ng/uL. The relative expression levels of mRNAs en-
coding the selected genes were analyzed in duplicates
and measured according to the manufacturer protocols
by qPCR (StepOnePlus Real-Time PCR System, Ther-
moFisher Scientific, Waltham, USA) using the following
specific TagMan gene expression assays (ThermoFisher
Scientific, Waltham, USA): Aifl (Mm00479862_gl),
Cx3crl (MmO00438354_m1), Mmp9 (Mm00442991_m1),
Tnfa (MmO00443258_m1), 116 (Mm00446190_m1), I1b
(Mm00434228_m1), Ccl2 (Mm004412422 ml), Argl
(MmO00475988_m1), Chil3 (Mm00657889_mH), Pparg
(Mm01184322_m1), 1110 (Mm00439614_m1), Tgfbl
(MmO01178820_m1), Myd88 (Mm00440338 m1), Tlrd
(MmO00445273_m1), and Irak4d (Mm00459443 m1l). Re-
sults were normalized to the levels of endogenous con-
trols: eukaryotic 185 rRNA (TagMan Ribosomal RNA
Control Reagents, #4308329) or GAPDH (#4352932E).
Relative mRNA expression was calculated with the
2724 method where Ct is the threshold cycle number
and results presented as values in relation to the control
conditions.

Quantitative real-time PCR analysis of miRNA levels

Similar to the quantification of mRNA expression, the
total RNA isolated from cell cultures or tissue homoge-
nates using the mirVana miRNA Isolation Kit (Thermo-
Fisher Scientific, Waltham, USA) was used for miRNA
expression analyses. Reverse transcription was done with
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10ng of total RNA with TagMan MicroRNA Reverse
Transcription Kit (ThermoFisher Scientific, Waltham,
USA), according to the manufacturer’s protocol. QPCR
was performed with TagMan MicroRNA assays (StepO-
nePlus Real-Time PCR System, ThermoFisher Scientific,
Waltham, USA), and the absolute copy number was
quantified from the standard curve equation. Standard
curve was prepared with a serial dilution of the synthetic
ssRNA in 0,1X TE buffer with the siRNA dilution ran-
ging from 0.5 pM to 5nM and representing from 400 to
4 x 10° copies, respectively.

Network analysis for miR-669c-3p predicted targets and
pathway enrichment analysis

To decipher the most prominent targets for miR-669c-
3p, a network analysis was carried out for the predicted
targets of miR-669c-3p. MiR-669c-3p targets were re-
trieved using miRTarBase [31] and TargetScan. MiRTar-
Base reports miRNA-target interactions validated
experimentally by reporter assay, Western blot, micro-
array, and next-generation sequencing experiments. Tar-
getScan predicts biological targets of miRNAs by
searching for the presence of conserved 8mer, 7mer, and
6mer sites that match the seed region of a miRNA [32,
33]. Then, it provides a context score for the confidence
of prediction which is the sum of the contribution of
multiple features, calculated as in Agarwal et al, 2015
[34]. Precisely, it includes a series of features such as the
site type, local AU, distance, SRNA1A, ORF 8mer count,
and UTR offset 6mer count. The most confident 15% of
the TargetScan genes associated with miR-669c-3p were
included into the analysis. Then the STRING database
[35] was utilized to create a network with high confi-
dence (score > 900) STRING interactions between the
miRTarBase and TargetScan targets. The network was
composed by 29 connected components. The pathway
enrichment analysis was performed using the R package
ReactomePA [36] for each component. Only the path-
ways enriched with an adjusted p value using the Bon-
ferroni correction lower than 0.01 were retrieved. Six
components were shown to be neuroinflammation-
associated, according to the involvement of one of these
six TargetScan genes: Mdgal, Fbxwll, Igfbp4, Foxol,
Cxcrl, and MyD88. In order to prioritize these genes,
the network was expanded with the relationships among
both the TargetScan and miRTarBase targets. Finally,
the pathway enrichment analysis was repeated.

RNA pulldown with biotinylated miRNA mimics (miRNA
pulldown)

Cell cultures were seeded at a density of 3 x 10° N2a cells/
dish or 2 x 10° BV2 cells/dish on 10 cm diameter dishes in
complete DMEM or complete RPMI-1640 media, respect-
ively. RNA pulldown was performed as previously described
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[37] with minor modifications. Briefly, biotinylated mmu-
miR-669¢-3p and biotinylated control cel-miR-39-3p (both
miRCURY LNA microRNA mimics, Premium, Biotin, Exi-
qon) in 50 nM concentration were used for the transfection.
Transfections were performed using Viromer Blue (Lipocalyx
GmbH, Halle, Germany) in Opti-MEM media (Thermo-
Fisher Scientificc Waltham, USA) for 4h after which the
transfection media were changed for complete DMEM or
complete RPMI-1640 for 20h. The transfected N2a cells
were exposed to 2 h of OGD followed by 24 h reoxygenation,
whereas BV2 cells were treated with LPS for 24 h. Thereafter,
cells were washed once with PBS, collected and the pulldown
experiment was performed. RNA was extracted from the
magnetic Dynabeads MyOne Streptavidin C1 (ThermoFisher
Scientific, Waltham, USA) using mirVana miRNA Isolation
Kit. RNA was reverse transcribed and cDNA templates were
used for qPCR reactions with TagMan gene expression as-
says (ThermoFisher Scientific, Waltham, USA). The data
were normalized to control lysate values and then to fold
changes calculated against control miRNA.

Statistical analyses

Animals were randomized to treatment groups and proce-
dures using GraphPad QuickCalcs online tool (GraphPad
Software, San Diego, CA, USA). Data collected from the ani-
mal study were analyzed blinded to the treatment groups
and the statistical analysis was run with GraphPad Prism
5.03 (GraphPad Software, San Diego, CA, USA) using either
paired or unpaired two-tailed ¢ tests or one-way ANOVA
followed by Bonferroni post hoc tests to compare means of
interest assuming homoscedasticity and normality of vari-
ables. Statistically significant outliers as calculated Grubb’s
tests using the GraphPad Prism software were excluded from
the datasets. Predetermined exclusion criteria for animals
were bleeding during the surgeries, unsuccessful ischemia in-
duction, or hemorrhages shown during MRIL Based on the
exclusion criteria, none of the animals were excluded from
pMCAo and tMCAo study. In total, eight animals from
tMCAo study died: one from LV1-GFP and four from LV1-
miR-669¢ group died during the ischemia surgery, two from
LV1-GFP group died at 1 dpi and one at 2 dpi. No animals
died from the pMCAo study. Cell culture experiments were
repeated three times, and data was analyzed with unpaired
two-tailed ¢ test or one-way ANOVA followed by Bonferroni
post hoc test. Data is reported as mean + SEM unless other-
wise stated and N numbers are stated in each figure legend.
P values < 0.05 were considered statistically significant.

Results

MiR-669c-3p expression is increased upon excitotoxic or
ischemic neuronal injury

To investigate whether OGD/R, glutamate exposure
in vitro or ischemic stroke in vivo modulate the expres-
sion levels of miR-669c-3p, N2a cells were subjected to
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OGD for 1, 2, or 3h followed by the reoxygenation
for 24h. OGD/R induced a significant increase of
miR-669¢c-3p expression levels at all tested time
points (Fig. 1a, p < 0.001). Similarly, excitotoxic insult
caused by 400 pM glutamate led to significant induc-
tion in miR-669¢-3p expression in the primary cor-
tical neurons (Fig. 1b, p = 0.009). To evaluate
whether miR-669c-3p overexpression is directly neu-
roprotective in vitro, N2a cells were transduced with
a lentiviral vector to overexpress miR-669c and ex-
posed to OGD for 2h followed by 24 h of reoxygena-
tion. Overexpression of miR-669c failed to prevent
ODG/R-induced N2a cell death (Fig. 1c). N2a cell
transduction with LV1-miR-669¢ resulted in 2.21-fold
upregulation in the expression of miR-669c-3p, com-
pared to cells transduced with LV1-GFP control vec-
tor (Fig. 1d, p = 0.0004). To evaluate the extent of
miR-669c expression in conditions of ischemic stroke
in vivo, the levels of miR-669¢c were measured in two
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different models of stroke, pMCAo and tMCAo.
pMCAo did not alter miR-669c-3p expression in the
peri-ischemic (PI) area at 1 dpi (Fig. 1e) but the levels
were elevated at 3 dpi (Fig. 1f, p = 0.0018), in com-
parison to the intact contralateral cortex. In tMCAo,
the levels of miR-669¢c-3p remained unchanged at 1
dpi (Fig. 1g) but were nearly significantly increased at
3 dpi (Fig. 1h, p = 0.0516) in the ipsilateral hemi-
sphere, as compared to the contralateral hemisphere.
In contrast, the expression levels of the other arm of
this miRNA hairpin precursor, miR-669¢c-5p, remained
unchanged (p = 0.8385) between PI and contralateral
cortex at 3 dpi in pMCAo model (data not shown).

MiR-669c overexpression modulates the inflammatory
response in BV2 cells by inducing anti-inflammatory
microglial phenotype

To assess the impact of miR-669c on microglial func-
tions, we first measured the levels of miR-669¢-3p in
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Fig. 1 MiR-669c-3p expression is increased under conditions of OGD/R and ischemia. Quantitative real-time PCR for miR-669¢c-3p in N2a cells
exposed to oxygen and glucose deprivation (OGD) for either 1, 2, or 3 h followed by reoxygenation for additional 24 h. a One-way ANOVA
followed by Bonferroni's post hoc tests, ***p < 0.001 compared to normoxic control cells (CTRL), N = 3-10. MiR-669c-3p expression is increased in
primary cortical neurons exposed to excitotoxic injury (b). Quantitative real-time PCR for miR-669c-3p in primary cortical neurons treated with

400 uM glutamate (GLU) for 24 h. Unpaired two-tailed t test: **p < 0.01 compared to vehicle-treated primary cortical neurons (CTRL), N = 3-5. MiR-
669c overexpression does not prevent the OGD/R-induced neuronal death in N2a cells (c). MTT assay of N2a cells exposed to OGD for 2 h
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669¢-3p in contralateral cortex (CONTRA) and peri-ischemic cortex area of the ipsilateral hemisphere (IPSI) at 1 (e) and 3 dpi (f) after pMCAo.
Paired two-tailed t tests: **p < 0.01 compared to contralateral hemisphere, N = 6-8. Quantitative real-time PCR for miR-669¢-3p in contralateral
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LPS and IL-4 exposed BV2 cells and LPS and IFN-y/LPS
exposed (referred as M1) primary murine microglia.
Whereas LPS and IL-4 failed to alter the expression
levels of miR-669¢-3p (Supplementary Fig. 1A), IFN-y in
combination with LPS significantly induced the expres-
sion of miR-669¢-3p in primary microglia (Supplemen-
tary Fig. 1B, p = 0.0003). To investigate whether
astrocytes express miR-669¢c-3p to a similar extent as
microglia, we assessed the levels of miR-669¢c-3p in both
primary microglia and primary astrocytes. Astrocytes
expressed significantly lower copy numbers of miR-
669c-3p compared to primary microglia (Supplementary
Fig. 1C, p = 0.0032). BV2 cell transduction with LV1-
miR-669c resulted in 2.3-fold upregulation in the expres-
sion of miR-669¢c-3p compared to cells transduced with
the control vector (Supplementary Fig. 1D, p = 0.0001).
To evaluate whether miR-669c impacts the
inflammation-related gene expression and cytokine re-
lease, BV2 cells were transduced with lentiviral vector to
overexpress miR-699c and thereafter challenged with
LPS (Fig. 2). Overexpression of miR-669¢ under proin-
flammatory conditions decreased the BV2 cell expres-
sion of Ibal (p = 0.011), fractalkine receptor CX3CR1 (p
= 0.0002), as well as proinflammatory genes MMP9 (p =
0.001), TNF-«a (p < 0.001), IL-6 (p < 0.001), IL-1B (p <
0.001), and CCL2 (p < 0.001) compared to LV1-GFP
transduced controls. Interestingly, it also induced a sig-
nificant increase in the expression levels of microglia/
macrophage alternative activation markers Argl (p =
0.0014), Chil3/Yml (p < 0.001), and PPAR-y (p =
0.0071). On the contrary, the levels of immunosuppres-
sive cytokines IL-10 (p=
0.0059) and TGEF-p (p = 0.0143) were decreased in LV1-
miR-669c transduced BV2 cells.

To assess the impact of miR-669¢ on microglial cytokine
production, LV1-miR-669c¢ transduced BV2 cells were ex-
posed to LPS and the secreted cytokines measured in the
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conditioned media. MiR-669¢ overexpressing cells dem-
onstrated a decreased proinflammatory response to LPS
exposure as the levels of TNF-a (Fig. 3a, p < 0.001), IL-6
(Fig. 3b, p < 0.001), and IL-12p70 (Fig. 3¢, p = 0.0019)
were significantly lower in miR-669¢ overexpressing BV2
cells compared to LPS-exposed LV1-GFP expressing con-
trols. On the contrary, the levels of MCP-1 were increased
(Fig. 3d, p = 0.0009) and levels of IL-10 (Fig. 3e) remained
unaltered.

MiR-669c overexpression in vivo decreased the ischemia-
induced brain injury and ameliorated the

neurobehavioral outcome

Finally, we investigated whether lentivirus-driven overex-
pression of miR-669¢ is neuroprotective in vivo against
ischemia-induced cell death. LV1-miR-669c lentiviral vec-
tor was injected into the caudate putamen of C57BL/6]
mice. The animals were subjected to tMCAo 3 weeks post
injection and the lesion volumes evaluated by MRI. The
LV1-miR-669c injected mice showed significantly smaller is-
chemic damage both at 1 (p = 0.0489) and 3 dpi (p = 0.0044)
(Fig. 4a-f). Concomitantly, the LV1-miR-669c injected mice
showed markedly improved sensorimotor functions as
analyzed by neuroscore testing at both time points (Fig. 4g,
p = 00427 and 4H, p = 0.0014). Injection of LV1-miR-669¢
into the striatum increased the expression of miR-669c-3p
within this region, when compared to control, LV1-GFP
injected mice (Fig. 4i-n).

LV1-miR-669c-mediated overexpression of miR-669c
induces alternative microglial/macrophage activation and
alters Iba1™ cell morphology in the ischemic brain

To demonstrate the impact of LV1-miR-669¢ in
ischemia-induced microglial activation, the brains of
tMCAo animals were evaluated by IHC staining against
typical microglial/macrophage marker Ibal [38] and the
levels of alternative activation marker Argl [39]. In LV1-
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with similar results. Values for miR-669¢ overexpressing cells normalized to LV1-GFP transduced (control) cells, presented as a solid line on graph.
Unpaired two-tailed t tests: *p < 0.05, **p < 0.01, ***p < 0.001 compared to LV1-GFP transduced BV2 cells. N = 3 in each group
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Fig. 3 Inflammation-induced cytokine release is altered in miR-669c overexpressing BV2 cells. Proinflammatory cytokines IL-6 (a), MCP-1 (c), TNF-a
(d), and IL-12p70 (e) and anti-inflammatory cytokine IL-10 (b) production was measured by CBA in the conditioned media from control LV1-GFP
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GFP control group, stroke induced a significant upregu-
lation in total Ibal immunoreactivity (Fig. 5a, p =
0.0355). However, no significant change in the total Ibal
expression between the ischemic LV-miR-669¢ and
LV1-GFP injected animals was observed in the ipsilateral
hemisphere at 3 dpi (Fig. 5a-c, p = 0.5348). As expected,
the extent of GFP signal around the LV injection site
was comparable between LV1-GFP and LV1-miR-669¢
injected animals (Fig. 5d, €). The LV transduction led to
GFP overexpression colocalizing with Ibal™ cells in both
of the animal groups (Fig. 5f-m). Moreover, the LV-miR-
669c injected stroke group had notably increased expres-
sion of Argl in comparison to LV1-miR-669c injected
shams (Fig. 6a, p = 0.0083). Importantly, LV1-miR-669c
injected ischemic mice demonstrated a significant upreg-
ulation in Argl immunoreactivity at 3 dpi compared to
the control, LV1-GFP injected ischemic animals (Fig. 6a-
e, p = 0.0044). Furthermore, miR-669c overexpressing is-
chemic animals showed increased cellular colocalization
of Argl and Ibal, as indicated by Pearson’s correlation
coefficient (Fig. 6f-n, p = 0.0016) and Mander’s overlap
coefficient M2 (p = 0.0409, data not shown). The extent
of overall CD45 immunoreactivity was unaltered in the
ipsilateral hemispheres between the groups (Supplemen-
tary Fig. 2a-e, p = 0.1104) and double staining for Argl

and CD45 revealed only a trend toward higher ratio of
Argl” to round in shape, CD45" cells in miR-669¢ over-
expressing animals compared to LV1-GFP injected con-
trols (Supplementary Fig. 2F-N, p = 0.0774). The CBA
analysis of the cytokine concentration in plasma and
brain homogenate samples failed to reveal significant al-
terations in the levels of proinflammatory cytokines be-
tween the groups (data not shown).

Although miR-669c overexpression did not change the
total levels of Ibal immunoreactivity in the brains of the
ischemic mice, it significantly altered several morpho-
logical characteristics of the Ibal" cells within the infarct
site. The cell area/perimeter ratio (Fig. 7a, p = 0.0066),
cell solidity (Fig. 7b, p = 0.0311), and circularity (Fig. 7c,
p = 0.0107) were significantly lower, while the decrease
of EquivDiameter failed to reach statistical significance
(Fig. 7d, p = 0.0532) in LV1-miR-669c-injected animals
as compared to the control group. Microglia in the rest-
ing state are typically characterized by long processes
and relatively small soma. Upon activation, the micro-
glial somas become larger and their processes shortened,
leading to a decreased cell perimeter and thereby in-
creased area/perimeter ratio [40]. Cell solidity is calcu-
lated as the ratio of cell area/convex area, whereas
circularity value equal to 1 represents a perfect circle.
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each tMCAo group. TMCAo animals intrastriatally injected with LV1-
miR-669c¢ (669) showed improved locomotor functions at 1 (g) and
3 dpi (h). Behavior was evaluated by composite neuroscore testing.
One-way ANOVA followed by Bonferroni's post hoc tests: *p < 0.05,
#%p < 0001 compared to sham-operated animals and *p < 0.05, #p
< 0.01 compared to LV1-GFP tMCAo mice. N = 11 in sham-operated
groups and N = 17-18 for tMCAo groups. Panels i-n illustrate the
extent of miR-669¢-3p expression (red) and Ibal immunoreactivity
(magenta) in representative LV1-GFP (i, k, m) or LV1-miR-669c¢ (j, I,n)
injected sham animals at 3 dpi. The LV injection sites are marked
with white dotted lines

Morphologically high circularity and solidity values cor-
respond to cells with small number of membrane pro-
trusions. In principle, the decrease in both of these
factors denotes that Ibal™ cells from miR-669c group
have smaller soma size, longer, and more prominent
processes (Fig. 7f) in comparison to control animals (Fig.
7e). Confocal microphotographs depict differential
morphology of intrastriatal Ibal® and Argl™ cells from
control (Fig. 7g, h) and miR-669c overexpressing animals
(Fig. 7j, k). Of note, based on the observed morpho-
logical traits, intracerebral injection of lentiviral vectors
resulted in transduction of multiple cell types in the
brain, including neurons, astrocytes, and microglia/mac-
rophages (Fig. 7i, ).

MiR-669c¢-3p targets the MyD88 transcript in vitro in BV2
microglial cells and in vivo levels of this target are
decreased in miR-669c-3p overexpressing stroke mice

In order to detect new significantly associated genes with
miR-669¢-3p, we took advantage of miRTarBase database
and the TargetScan prediction tool. From miRTarBase, we
manually retrieved experimentally validated miRNA-target
interactions, whereas from TargetScan, we selected the best
predicted targets of miR-669c-3p. Then, we performed a net-
work analysis considering the aforementioned targets and
their relationships in STRING with the highest score. Next,
we carried out a pathway enrichment analysis of the con-
nected components of the network in order to understand
whether TargetScan genes were significantly enriched in
pathways associated with neuroinflammation. The compo-
nents containing genes Mdgal, Fbxwll, Igfbp4, Foxol,
Cxcrl, and MyD88 provided relevant neuroinflammation-
associated pathways. Expanding the network with the rela-
tionships both among TargetScan targets and miRTarBase,
the new pathway enrichment analysis highlighted only one
component, containing ia. MyD88 and TIr6, strongly
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Fig. 5 MiR-669¢ overexpression does not change overall microglia/macrophage activation under cerebral ischemia. Total microglial/macrophage
activation was assessed by quantification of Ibal immunostaining in the ipsilateral hemisphere. Ibal immunoreactivity was not altered by the
miR-669¢c-3p-mediated (669) overexpression at 3 dpi (a). Panels b and ¢ are representative photographs of coronal sections stained with IbaT in
LV1-GFP control (b) and LV1-miR-669c¢ injected tMCAo animals (c). One-way ANOVA followed by Bonferroni's post hoc tests: *p < 0.05 compared
to the respective sham-operated animals. N = 3 in each sham and N = 6 in each tMCAo group. Panels d and e depict the extent of GFP
expression in the brains of the LV1-GFP (d) and LV1-miR-669c (e) injected stroke animals. Panels f-m contain confocal microphotographs
depicting LV transduced, GFP* cells colocalizing with Ibal™ cells in the ipsilateral striatum of LV1-GFP control (f-i) and LV1-miR-669¢ (j-m)

LV1-miR-669c

enriched in neuroinflammation-associated pathways and toll-
like-receptor signaling (Fig. 8). Based on the results of net-
work analysis, we selected MyD88 as the best predicted tar-
get and subsequently our pulldown analysis confirmed that
MyD88 transcript is directly interacting with miR-669c-3p.
Specifically, the results of pulldown assay revealed MyD88 as
a direct target for miR-669¢c-3p both in BV2 (Fig. 9a, p =
0.0002) and in N2a cells (Fig. 9, p < 0.001). We confirmed
that MyD88 expression was decreased in both BV2 (Fig. 9b,
p =0.0101) and N2a cells (Fig. 9f, p = 0.0007) overexpressing
miR-669¢-3p. Other direct targets revealed using the pull-
down assay for miR-669c-3p in BV2s were MMP9 (Fig. 9¢, p
= 0.0013) and TNF-a transcripts (Fig. 9d, p = 0.0016). The
expression of other members of the toll-like receptor signal-
ing pathway predicted as miR-669c-3p targets by the

prediction tools, TLR4 (p = 0.314) and IRAK4 (p = 0.3442),
were not changed and thus not targeted by miR-669c-3p
(data not shown).

After identifying the MyD88 transcript as a direct target
for miR-669¢-3p in vitro, we finally validated its expres-
sion in the brains of ischemic mice. MyD88 immunoreac-
tivity was significantly higher in the ipsilateral striatal area
of control stroke group compared to sham-operated con-
trols (data not shown, p = 0.029), in contrast to miR-669c-
3p overexpressing stroke animals (data not shown, p =
0.7057). Although we failed to detect any significant
changes of the total ipsilateral MyD88 levels (data not
shown, p = 0.9918), ipsistriatal MyD88 immunoreactivity
was specifically decreased in miR-669¢c-3p overexpressing
animals (Fig. 9g-m, p = 0.0478).
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Fig. 6 MiR-669c overexpression promotes microglial/macrophage alternative activation in ischemic brain. MiR-669c stroke group (669) showed
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Discussion

Here, we show for the first time that overexpression of a
hypoxia-inducible miR-669c mediates the neuroprotec-
tion and microglial/macrophage alternative activation in
a mouse model of cerebral ischemia. Rather than alter-
ing the total Ibal immunopositivity, miR-669c changed
the morphology of Ibal expressing cells and markedly
increased the expression of Argl, a marker for alterna-
tively activated microglia and macrophages. A similar
switch in microglial activation was also observed
in vitro, where overexpression of miR-669c induced the
expression of Argl and alleviated LPS-induced proin-
flammatory activation in BV2 cells. Furthermore, we

discovered that miR-669c-3p directly interacts with
MyD88, MMP9, and TNEF-« transcripts.

Brain ischemia induces a rapid inflammatory response
which is thought to be initiated and aggravated by the
brain microglia, but also involves the infiltration of per-
ipheral immune cells into the affected tissue. The com-
plex intercellular crosstalk between the endogenous
innate immune cells and the infiltrating leukocytes is ini-
tially meant to limit the ischemia-induced cell death, yet
excessive proinflammatory activation has been shown to
promote the neuronal apoptosis [41]. A vast amount of
literature shows that modulation of inflammatory cas-
cades is protective in cerebral stroke and these
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approaches are often mediated by an increase of micro-
glial/macrophage alternative activation. The alternative
activation phenotype is characterized by enhanced ex-
pression of the enzyme Argl [15, 42—45], which partici-
pates in endogenous tissue repair processes [46, 47] by
supporting the extracellular matrix remodeling [48],
axonal growth, and neuronal survival [49]. It has been
shown that the majority of Argl™ cells in the pMCAo
model are infiltrating macrophages [50], which have also
been suggested to be essential for maintaining the neu-
roprotective phenotype early after ischemic brain injury
[51]. There have been studies demonstrating that in a

tMCAo model miRNA-mediated Argl induction specif-
ically in the microglia and macrophages provides the
neuronal protection together with functional improve-
ment [15]. In the current study, the neuroprotection in
miR-669¢ overexpressing animals was also associated
with a robust increase of Argl expression in the ische-
mic hemisphere at 3 dpi. These Argl™ cells showed in-
creased colocalization with Ibal signal, indicating that
they were primarily brain-resident immune cells, micro-
glia, although we cannot exclude the contribution of in-
filtrating macrophages into the increased expression of
Argl [52].
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The ability of miRNAs to alter post-stroke gene tran-  various miRNAs are capable of regulating the same
scription is well established. Sequencing studies have re-  pathways pinpoints the complexity of the regulation of
vealed that stroke induces alterations in levels of post-stroke inflammation by miRNAs. Our data show
hundreds of miRNAs already during very early phases that albeit miR-669c overexpression in N2a cells did not
after the stroke onset. A number of studies have pin- prevent the OGD/R-induced cell death in vitro, overex-
pointed miRNAs with the capacity to regulate stroke- pression of miR-669c alleviated the microglial proinflam-
induced neuroinflammatory responses for therapeutic matory activation and increased the expression of
benefit [53]. Inhibition or overexpression of miRNAs has  alternative activation markers, indicating the modulation
been shown to limit the microglial activation and/or of inflammation toward a neuroprotective phenotype,
leukocyte infiltration, in many cases through targeting both in vitro and in vivo. This was accompanied by a re-
nuclear factor kappa B (NFxB) and thereby alleviating  duction in the lesion volume as well as amelioration of
stroke-induced neuronal death. These include antago- neurological deficits.
mirs for miR-22 [54] and miR-181a [14] and overexpres- To our knowledge, this study is the first to describe
sion of miR-203 [55]. In addition, suppression of that miR-669c-3p is induced upon ischemic stroke and
hypoxia-inducible miR-3473b [56] or upregulation of to have a role in stroke-induced neuroinflammatory re-
let-7c-5p [12] was shown to alleviate the microglial acti-  sponses. In fact, miR-669c has been relatively little stud-
vation in vitro and in vivo, and to provide the protection ied in the brain and only a handful of studies have
in a mouse model of ischemic stroke. The fact that pinpointed any role for this miRNA. Kuypers et al
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described that the Sfmbt2 cluster is involved in the regu-
lation of oligodendrocyte proliferation and remyelination
[57]. In support of our data, the Sfmbt2 cluster miRNAs
were shown to be upregulated in a rat model of tMCAo
[22]. Interestingly, miR-669c-3p has been recently shown
to interact with the network of circular RNAs in the
transient ischemic stroke in mice [58]; however, the spe-
cific role of miR-669¢c-3p in cerebral ischemia has not
been investigated further in detail. In addition, Druz
et al. showed that the Sfmbt2 gene and miR-669c are in-
duced following glucose deprivation-triggered oxidative
stress and suggested that C2MC has a role in develop-
ment of diseases involving oxidative stress [17, 18].

Similar to Druz et al.,, our data showed that miR-669c-
3p is induced in both primary neurons and N2a cells ex-
posed to glutamate or OGD/R, as well as now for the
first time, in the cerebral ischemia in vivo. However, the
overexpression of miR-669c¢ did not further aggravate
the OGD/R-induced neuronal death suggesting that this
specific miRNA may have alternative functions in the
conditions of ischemic stroke. Indeed, our study shows
that instead of directly modulating the neuronal survival,
miR-669c effectively regulates microglial inflammatory
responses. Overexpression of miR-669c in microglial
BV2 cells resulted in increased expression of alternative
activation markers Argl, Chil3 (Yml), and PPAR-y.
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Ym1, known also as chitinase-like 3, is considered a typ-
ical anti-inflammatory marker induced in macrophages
and microglia in response to IL-4 treatment [59, 60]. It
is interacting with heparin/heparan sulfate proteoglycans
and mannose receptor, which are expressed by the alter-
natively activated microglia or macrophages, facilitating
recovery and extracellular matrix remodeling [61].
Ligand-mediated  peroxisome  proliferator-activated
receptor-y activation has already been comprehensively
described to promote microglia/macrophage alternative
activation in various neuroinflammatory diseases [62—
65]. Curiously, PPAR-y was shown to directly bind to
distal enhancer of Argl gene and thereby participate in
regulation of alternative macrophage activation [66], and
this mechanism could also be partially responsible for
the protection seen in our model. Concomitantly, we ob-
served a downregulation in several proinflammatory
genes in miR-669c overexpressing, LPS-exposed BV2
cells, including Mmp9, Tnfa (TNF-a), 116 (IL-6), Il1b
(IL-1B), and Ccl2 (MCP-1). All of these factors have
been extensively described in the literature as induced in
the conditions of cerebral ischemia [67, 68]. To further
investigate which neuroinflammation-related targets
would be the most relevant for miR-669c-3p, we first
carried out network analysis, which highlighted MyD88
as an important gene candidate for interaction with this
miRNA, and then we confirmed with pulldown assay
that miR-669c-3p indeed directly targets MyD88 tran-
script. Since the pulldown experiments revealed that in
addition to MyD88, also MMP9 and TNF-a transcripts
were direct targets of miR-669c-3p, it is very likely that
the decrease in the expression of these inflammation-
related factors specifically in microglia contribute to the
protective effects observed in our study.

MyD88 acts as a key downstream signal transducing
adaptor molecule in the TLR/NF-kB and IL-1/IL-1R1
signaling pathways [69], and recruits signaling proteins
to the IFN-y receptor, associated with the induction of
innate immune response [70]. It is essential for the
proper responses of IL-1, IL-18, and all TLRs, except
TLR3, in the activation of transcription factors NF-«kB
and AP-1, followed by the induction of proinflammatory
gene expression. It has been demonstrated that exagger-
ated or prolonged TLR-mediated inflammation can lead
to aggravated pathology in various inflammatory dis-
eases, such as sepsis, myocardial ischemia, and ischemic
stroke [71-73]. Similarly, excessive stimulation of the in-
nate immune system by MyD88 in certain pathologies
may lead to overamplification of the inflammatory sig-
naling [74]. It has been demonstrated that MyD88 sig-
naling regulates leukocyte recruitment after brain injury
and plays an important role in the regulation of early
proinflammatory gene expression in this pathology [75].
Disruption of the TLR/MyD88/NF-«B signaling pathway

Page 17 of 21

was shown to be protective in the model of myocardial
injury by attenuating NLRP3 inflammasome activation
[76]. Moreover, alleviation or complete ablation of
MyD88 signaling has been demonstrated as beneficial in
several central nervous system pathologies, i.a., animal
experimental autoimmune encephalomyelitis model [77],
neuropathic pain [78], traumatic brain injury [79, 80],
epilepsy [81, 82], Alzheimer's disease [83], hypoxic neo-
natal brain injury in LPS-sensitized mice [84], subarach-
noid hemorrhage [85], as well as ischemic stroke [86,
87]. However, there is also a disparate evidence from an-
other study indicating that the infarct size was not de-
creased in MyD88-/- mice subjected to permanent
cerebral ischemia [88] and yet another study demon-
strating that specifically hematopoietic cells exhibit a
neuroprotective function after stroke and this is medi-
ated by MyD88 [89]. Taken together, the functional out-
come of modulation of TLR/MyD88 signaling pathway
neuroinflammatory diseases requires careful fine-tuning
and is likely to depend on the disease model, cell type,
and additional regulation of MyD88-independent path-
ways. As it is difficult to develop inhibitors for adaptor
proteins [90], miR-669c-3p-mediated inhibition of
MyD88 may serve as a beneficial tool to control over-
active TLR signaling in neuroinflammatory conditions.

The overexpression of miR-669¢ also normalized acti-
vated microglia and macrophage morphology. In healthy
conditions microglial cells are characterized by highly
ramified shape, enabling them to dynamically surveil the
brain microenvironment [91]. Upon brain injury, these
cells promptly respond to the pathological changes in
the brain parenchyma and acquire ameboid shape, char-
acterized by enlarged soma and retracted processes [92].
In comparison to the resting state, activated cells have a
high cellular area to perimeter ratio, as they are rounded
in shape and devoid of extensive branching. Ibal® cells
in vivo in miR-669c overexpressing ischemic animals
showed a smaller area/perimeter ratio, as well as de-
creased solidity and circularity, and all of these parame-
ters indicate that morphological changes of these cells
could exhibit anti-inflammatory properties [30].

The expression of GFP driven by the lentiviral vec-
tors was very local, yet the protection spanned
throughout the ischemic hemisphere. This indicates
that the miR-669¢ overexpression driven by the lenti-
viral construct may have spread throughout the ische-
mic brain. Accumulating amounts of literature
suggest that this may occur via exosomes [93-95]. Al-
though beyond the scope of this study, it is plausible
that miR-669c¢ spread within the ischemic brain via
exosomal transfer, and thus the neuroprotection was
observed throughout the ipsilateral hemisphere, and
not only locally at the site of the lentiviral injection
[96].
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Conclusions

Taken together, the current study is novel in multiple
ways. We identify a novel hypoxia-regulated miRNA,
miR-669c-3p, increased in conditions of cerebral stroke,
and show that it is able to modulate microglial and
macrophage activation toward anti-inflammatory pheno-
type. Importantly, miR-669c overexpression was able to
reduce the ischemic brain damage and notably improve
the neurobehavioral outcome of the stroke animals. We
demonstrate novel binding partners for miR-669c-3p
with the functional relevance in ischemic stroke and
provide the evidence that this miRNA decreases in vivo
expression of one of its targets, MyD88. However, it
would be beneficial if less invasive treatment approaches
than a direct intracerebral injection of miR-669c-
overexpressing lentiviral vector could be tested in the
near future, e.g., systemic delivery of miRNA mimics via
RVG-exosomes or other lipid-based vehicles, which was
proven successful for miR-124 [97]. Overall, our findings
emphasize the importance and potential of miRNAs
used as a tool for successful control of neuroinflamma-
tory responses in the context of cerebral ischemia.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512974-020-01870-w.

Additional file 1: Supplementary Figure 1. MiR-669¢-3p levels are up-
regulated in primary murine microglia upon LPS and IFN-y challenge. LPS
or IL-4 exposure alone does not alter BV2 cell (A) or primary microglial
cell (B) expression of miR-669¢-3p, yet miR-669¢-3p expression is induced
in primary microglia upon IFN-y and LPS combined stimulation (M1) (B).
Quantitative real-time PCR for miR-669¢-3p in wild type BV2 cells treated
with vehicle, LPS (50 ng/ml) or IL-4 (20 ng/ml) for 24 h or primary murine
microglia treated with vehicle or IFN-y (20 ng/ml) in combination with
LPS (10 ng/ml) for 24 h. One-way ANOVA followed by Bonferroni's post-
hoc tests: N = 6-7 in each group. MiR-669¢-3p expression is higher in un-
stimulated primary microglia in comparison to primary astrocytes (C).
Quantitative real-time PCR for miR-669¢-3p in vehicle-treated primary
murine microglia (MG) or vehicle primary murine astrocytes (ASTRO). Un-
paired two-tailed t-test: **p < 0.01 compared to vehicle treated astro-
cytes, N = 3-6. MiR-669¢-3p (669) expression is increased in LV1-miR-669c
transduced BV2 cells versus LV1-GFP (GFP) transduced cells (D). Quantita-
tive real-time PCR for miR-669¢-3p in BV2 cells transduced either with
control LV1-GFP or LV1-miR-669¢. Unpaired two-tailed t-test: ***p < 0.001
compared to LV1-GFP transduced vehicle, N = 4-6 in each group.

Additional file 2: Supplementary Figure 2. CD45 expression does not
change under miR-669¢ overexpression in conditions of brain ischemia.
The ipsilateral CD45 immunoreactivity remained unaltered between
stroke control LV1-GFP (GFP) and LV1-miR-669c mice (669) (A). Panels B-E
are representative photographs of coronal sections stained with CD45 in
LV1-GFP control (B, D) and LV1-miR-669c injected tMCAo animals (C, E).
Similarly, the ratio of Arg1™ to round in shape, bright CD45" cells was not
changed in LV1-miR-669¢ animals (669) comparing to the control group
(GFP) (F). Panels G-N consists of confocal microphotographs illustrating
the proportion of Arg1™ and CD45" cells in the ipsilateral striatum of LV1-
GFP control (G-J) and LV1-miR-669c¢ (K-N) stroke animals. Unpaired two-

tailed t-tests. N = 6 animals per each group.
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protein 1 (MCP-1); CD45: Leukocyte common antigen; CX3CR1: CX3C
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