30 research outputs found

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Spent BWR fuel characterisation combining a fork detector with gamma spectrometry:Report on Task JNT A 1071 FIN of the Finnish Support Programme to IAEA Safeguards

    No full text
    The LWR spent fuel assemblies have to be verified at the partial defect level before they become difficult to access. According to the IAEA's criteria the partial defect test for spent fuel should be able to detect if half or more of the fuel pins have been removed from an assembly and possibly replaced by dummies. Euratom applies similar criteria. Therefore a standard verification procedure needs to be developed using an appropriate combination of measurements and theoretical calculations. Two experiments with an "upgraded" fork detector were performed at the TVO KPA Store in September and in December 1999. On the whole, 26 assemblies were measured. In the "upgraded" fork detector the total neutron count and the gross gamma measurements are complemented with gamma spectroscopic measurement using an integrated measurement head. A cadmium-zinc-telluride (CZT) detector is placed on the same vertical level as the fission and ionisation chambers. This enables simultaneous gamma and neutron measurements at one location. In the upgraded fork model the fork prongs can also be removed and gamma spectrometric measurements can be done using only the CZT detector. This allows more versatile placement of the target fuel assembly allowing various kind of gamma spectroscopic scanning measurements. In this report a gamma spectroscopy based correction to the gross gamma data is introduced. This corrected gross gamma signal seems to describe more consistently the burnup of the assembly than the 137Cs intensity obtained by direct gamma spectrometry. Concerning the measured neutron data of assemblies with different enrichments, an enrichment correction method based on calculations made with the ORIGEN-S program is introduced in this report. In addition, the share of 244Cm neutrons of the total neutron source is derived from the results calculated with the PYVO program. These corrections to the neutron signal seem to improve the correlation of the neutron signal to the burnup and to the gross gamma signal. The PYVO program can be considered as an essential tool in the analysis. With help of the PYVO the 244Cm share of total neutron counts, the 244Cm neutron source term and the 137Cs activity of measured assemblies can be calculated. In addition, the axial activity profiles of one assembly are compared with the calculations made by ORIGEN-S. These comparisons show a remarkable agreement between the measured and calculated results

    Spent BWR fuel characterisation combining a fork detector with gamma spectrometry:Report on Task JNT A 1071 FIN of the Finnish Support Programme to IAEA Safeguards

    No full text
    The LWR spent fuel assemblies have to be verified at the partial defect level before they become difficult to access. According to the IAEA's criteria the partial defect test for spent fuel should be able to detect if half or more of the fuel pins have been removed from an assembly and possibly replaced by dummies. Euratom applies similar criteria. Therefore a standard verification procedure needs to be developed using an appropriate combination of measurements and theoretical calculations. Two experiments with an "upgraded" fork detector were performed at the TVO KPA Store in September and in December 1999. On the whole, 26 assemblies were measured. In the "upgraded" fork detector the total neutron count and the gross gamma measurements are complemented with gamma spectroscopic measurement using an integrated measurement head. A cadmium-zinc-telluride (CZT) detector is placed on the same vertical level as the fission and ionisation chambers. This enables simultaneous gamma and neutron measurements at one location. In the upgraded fork model the fork prongs can also be removed and gamma spectrometric measurements can be done using only the CZT detector. This allows more versatile placement of the target fuel assembly allowing various kind of gamma spectroscopic scanning measurements. In this report a gamma spectroscopy based correction to the gross gamma data is introduced. This corrected gross gamma signal seems to describe more consistently the burnup of the assembly than the 137Cs intensity obtained by direct gamma spectrometry. Concerning the measured neutron data of assemblies with different enrichments, an enrichment correction method based on calculations made with the ORIGEN-S program is introduced in this report. In addition, the share of 244Cm neutrons of the total neutron source is derived from the results calculated with the PYVO program. These corrections to the neutron signal seem to improve the correlation of the neutron signal to the burnup and to the gross gamma signal. The PYVO program can be considered as an essential tool in the analysis. With help of the PYVO the 244Cm share of total neutron counts, the 244Cm neutron source term and the 137Cs activity of measured assemblies can be calculated. In addition, the axial activity profiles of one assembly are compared with the calculations made by ORIGEN-S. These comparisons show a remarkable agreement between the measured and calculated results

    Long-term exposure to ambient air pollution and incidence of cerebrovascular events : results from 11 European cohorts within the ESCAPE project

    Get PDF
    Few studies have investigated effects of air pollution on the incidence of cerebrovascular events.; We assessed the association between long-term exposure to multiple air pollutants and the incidence of stroke in European cohorts.; Data from 11 cohorts were collected, and occurrence of a first stroke was evaluated. Individual air pollution exposures were predicted from land-use regression models developed within the European Study of Cohorts for Air Pollution Effects (ESCAPE). The exposures were: PM2.5 [particulate matter (PM) ≤ 2.5 μm in diameter], coarse PM (PM between 2.5 and 10 μm), PM10 (PM ≤ 10 μm), PM2.5 absorbance, nitrogen oxides, and two traffic indicators. Cohort-specific analyses were conducted using Cox proportional hazards models. Random-effects meta-analysis was used for pooled effect estimation.; A total of 99,446 study participants were included, 3,086 of whom developed stroke. A 5-μg/m3 increase in annual PM2.5 exposure was associated with 19% increased risk of incident stroke [hazard ratio (HR) = 1.19, 95% CI: 0.88, 1.62]. Similar findings were obtained for PM10. The results were robust to adjustment for an extensive list of cardiovascular risk factors and noise coexposure. The association with PM2.5 was apparent among those ≥ 60 years of age (HR = 1.40, 95% CI: 1.05, 1.87), among never-smokers (HR = 1.74, 95% CI: 1.06, 2.88), and among participants with PM2.5 exposure > 25 μg/m3 (HR = 1.33, 95% CI: 1.01, 1.77).; We found suggestive evidence of an association between fine particles and incidence of cerebrovascular events in Europe, even at lower concentrations than set by the current air quality limit value

    UV responses of Lolium perenne raised along a latitudinal gradient across Europe: a filtration study

    No full text
    Lolium perenne (cv. AberDart) was grown at 14 locations along a latitudinal gradient across Europe (3768 degrees N) to study the impact of ultraviolet radiation (UV) and climate on aboveground growth and foliar UV-B absorbing compounds. At each location, plants were grown outdoors for 5 weeks in a replicated UV-B filtration experiment consisting of open, UV-B transparent (cellulose diacetate) and UV-B opaque (polyester) environments. Fourier transform-infrared spectroscopy was used to compare plant metabolite profiles in relation to treatment and location. UV radiation and climatic parameters were determined for each location from online sources and the data were assessed using a combination of anova and multiple regression analyses. Most of the variation in growth between the locations was attributable to the combination of climatic parameters, with minimum temperature identified as an important growth constraint. However, no single environmental parameter could consistently account for the variability in plant growth. Concentrations of foliar UV-B absorbing compounds showed a positive trend with solar UV across the latitudinal gradient; however, this relationship was not consistent in all treatments. The most striking experimental outcome from this study was the effect of presence or absence of filtration frames on UV-absorbing compounds. Overall, the study demonstrates the value of an European approach in studying the impacts of natural UV across a large latitudinal gradient. We have shown the feasibility of coordinated UV filtration at multiple sites but have also highlighted the need for open controls and careful interpretation of plant responses
    corecore