813 research outputs found

    A multi-layered Bayesian network model for structured document retrieval

    Get PDF
    New standards in document representation, like for example SGML, XML, and MPEG-7, compel Information Retrieval to design and implement models and tools to index, retrieve and present documents according to the given document structure. The paper presents the design of an Information Retrieval system for multimedia structured documents, like for example journal articles, e-books, and MPEG-7 videos. The system is based on Bayesian Networks, since this class of mathematical models enable to represent and quantify the relations between the structural components of the document. Some preliminary results on the system implementation are also presented

    TRIS III: the diffuse galactic radio emission at δ=+42∘\delta=+42^{\circ}

    Full text link
    We present values of temperature and spectral index of the galactic diffuse radiation measured at 600 and 820 MHz along a 24 hours right ascension circle at declination δ=+42∘\delta = +42^{\circ}. They have been obtained from a subset of absolute measurements of the sky temperature made with TRIS, an experiment devoted to the measurement of the Cosmic Microwave Background temperature at decimetric-wavelengths with an angular resolution of about 20∘20^{\circ}. Our analysis confirms the preexisting picture of the galactic diffuse emission at decimetric wavelength and improves the accuracy of the measurable quantities. In particular, the signal coming from the halo has a spectral index in the range 2.9−3.12.9-3.1 above 600 MHz, depending on the sky position. In the disk, at TRIS angular resolution, the free-free emission accounts for the 11% of the overall signal at 600 MHz and 21% at 1420 MHz. The polarized component of the galactic emission, evaluated from the survey by Brouw and Spoelstra, affects the observations at TRIS angular resolution by less than 3% at 820 MHz and less than 2% at 600 MHz. Within the uncertainties, our determination of the galactic spectral index is practically unaffected by the correction for polarization. Since the overall error budget of the sky temperatures measured by TRIS at 600 MHz, that is 66 mK(systematic)++18 mK (statistical), is definitely smaller than those reported in previous measurements at the same frequency, our data have been used to discuss the zero levels of the sky maps at 150, 408, 820 and 1420 MHz in literature. Concerning the 408 MHz survey, limiting our attention to the patch of sky corresponding to the region observed by TRIS, we suggest a correction of the base-level of (+3.9±0.6)(+3.9\pm 0.6)K.Comment: Accepted for publication in the Astrophysical Journa

    A supernova remnant coincident with the slow X-ray pulsar AX J1845-0258

    Get PDF
    We report on Very Large Array observations in the direction of the recently-discovered slow X-ray pulsar AX J1845-0258. In the resulting images, we find a 5-arcmin shell of radio emission; the shell is linearly polarized with a non-thermal spectral index. We class this source as a previously unidentified, young (< 8000 yr), supernova remnant (SNR), G29.6+0.1, which we propose is physically associated with AX J1845-0258. The young age of G29.6+0.1 is then consistent with the interpretation that anomalous X-ray pulsars (AXPs) are isolated, highly magnetized neutron stars ("magnetars"). Three of the six known AXPs can now be associated with SNRs; we conclude that AXPs are young (~<10 000 yr) objects, and that they are produced in at least 5% of core-collapse supernovae.Comment: 4 pages, 1 embedded EPS file, uses emulateapj.sty. Accepted to ApJ Letter

    TRIS II: search for CMB spectral distortions at 0.60, 0.82 and 2.5 GHz

    Full text link
    With the TRIS experiment we have performed absolute measurements of the sky brightness in a sky circle at δ=+42∘\delta = +42^{\circ} at the frequencies ν=\nu = 0.60, 0.82 and 2.5 GHz. In this paper we discuss the techniques used to separate the different contributions to the sky emission and give an evaluation of the absolute temperature of the Cosmic Microwave Background. For the black-body temperature of the CMB we get: Tcmbth=(2.837±0.129±0.066)KT_{cmb}^{th}=(2.837 \pm 0.129 \pm 0.066)K at ν=0.60\nu=0.60 GHz; Tcmbth=(2.803±0.051−0.300+0.430)KT_{cmb}^{th}=(2.803 \pm 0.051 ^{+0.430} _{-0.300})K at ν=0.82\nu=0.82 GHz; Tcmbth=(2.516±0.139±0.284)KT_{cmb}^{th}=(2.516 \pm 0.139 \pm 0.284)K at ν=2.5\nu=2.5 GHz. The first error bar is statistic (1σ\sigma) while the second one is systematic. These results represent a significant improvement with respect to the previous measurements. We have also set new limits to the free-free distortions, −6.3×10−6<Yff<12.6×10−6 -6.3 \times 10^{-6} < Y_{ff} < 12.6 \times 10^{-6}, and slightly improved the Bose-Einstein upper limit, ∣μ∣<6×10−5|\mu| < 6 \times 10^{-5}, both at 95% confidence level.Comment: accepted for publication in The Astrophysical Journa

    High Resolution X-Ray Spectroscopy of SN 1987A: Monitoring with XMM-Newton

    Full text link
    We report the results of our XMM-Newton monitoring of SN 1987A. The ongoing propagation of the supernova blast wave through the inner circumstellar ring caused a drastic increase in X-ray luminosity during the last years, enabling detailed high resolution X-ray spectroscopy with the Reflection Grating Spectrometer. The observations can be used to follow the detailed evolution of the arising supernova remnant. The fluxes and broadening of the numerous emission lines seen in the dispersed spectra provide information on the evolution of the X-ray emitting plasma and its dynamics. These were analyzed in combination with the EPIC-pn spectra, which allow a precise determination of the higher temperature plasma. We modeled individual emission lines and fitted plasma emission models. Especially from the observations between 2003 and 2007 we can see a significant evolution of the plasma parameters and a deceleration of the radial velocity of the lower temperature plasma regions. We found an indication (3-sigma-level) of an iron K feature in the co-added EPIC-pn spectra. The comparison with Chandra grating observations in 2004 yields a clear temporal coherence of the spectral evolution and the sudden deceleration of the expansion velocity seen in X-ray images ~6100 days after the explosion.Comment: 10 pages, 8 Figures; accepted by A&

    It Takes a Village. Collaborative Outer Planet Missions

    Get PDF
    A mission to one or both of our local Ice Giants (Uranus and Neptune) emerged as a high priority in the most recent Planetary Science Decadal Survey and was also specifically mentioned supportively in the Heliophysics Decadal Survey. In 2016, NASA convened a science definition team to study ice giant mission concepts in more detail. Uranus and Neptune represent the last remaining planetary type in our Solar System to have a dedicated orbiting mission. The case for a Uranus mission has been made eloquently in the Decadal Surveys. Here we summarize some of the major drivers that lead to enthusiastic support for an Ice Giant mission in general, and use the example of a Uranus Mission concept to illustrate opportunities such a mission might provide for cross-division collaboration and cost-sharing

    Titan Science with the James Webb Space Telescope (JWST)

    Get PDF
    The James Webb Space Telescope (JWST), scheduled for launch in 2018, is the successor to the Hubble Space Telescope (HST) but with a significantly larger aperture (6.5 m) and advanced instrumentation focusing on infrared science (0.6-28.0 μ\mum ). In this paper we examine the potential for scientific investigation of Titan using JWST, primarily with three of the four instruments: NIRSpec, NIRCam and MIRI, noting that science with NIRISS will be complementary. Five core scientific themes are identified: (i) surface (ii) tropospheric clouds (iii) tropospheric gases (iv) stratospheric composition and (v) stratospheric hazes. We discuss each theme in depth, including the scientific purpose, capabilities and limitations of the instrument suite, and suggested observing schemes. We pay particular attention to saturation, which is a problem for all three instruments, but may be alleviated for NIRCam through use of selecting small sub-arrays of the detectors - sufficient to encompass Titan, but with significantly faster read-out times. We find that JWST has very significant potential for advancing Titan science, with a spectral resolution exceeding the Cassini instrument suite at near-infrared wavelengths, and a spatial resolution exceeding HST at the same wavelengths. In particular, JWST will be valuable for time-domain monitoring of Titan, given a five to ten year expected lifetime for the observatory, for example monitoring the seasonal appearance of clouds. JWST observations in the post-Cassini period will complement those of other large facilities such as HST, ALMA, SOFIA and next-generation ground-based telescopes (TMT, GMT, EELT).Comment: 50 pages, including 22 figures and 2 table

    Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy

    Get PDF
    Chimeric antigen receptor (CAR) T-cell therapy has produced remarkable anti-tumor responses in patients with B-cell malignancies. However, clonal kinetics and transcriptional programs that regulate the fate of CAR-T cells after infusion remain poorly understood. Here we perform TCRB sequencing, integration site analysis, and single-cell RNA sequencing (scRNA-seq) to profile CD8+ CAR-T cells from infusion products (IPs) and blood of patients undergoing CD19 CAR-T immunotherapy. TCRB sequencing shows that clonal diversity of CAR-T cells is highest in the IPs and declines following infusion. We observe clones that display distinct patterns of clonal kinetics, making variable contributions to the CAR-T cell pool after infusion. Although integration site does not appear to be a key driver of clonal kinetics, scRNA-seq demonstrates that clones that expand after infusion mainly originate from infused clusters with higher expression of cytotoxicity and proliferation genes. Thus, we uncover transcriptional programs associated with CAR-T cell behavior after infusion.Published versio

    On the short term stability and tilting motion of a well-observed low-latitude solar coronal hole

    Full text link
    The understanding of the solar magnetic coronal structure is tightly linked to the shape of open field regions, specifically coronal holes. A dynamically evolving coronal hole coincides with the local restructuring of open to closed magnetic field, which leads to changes in the interplanetary solar wind structure. By investigating the dynamic evolution of a fast-tilting coronal hole, we strive to uncover clues about what processes may drive its morphological changes, which are clearly visible in EUV filtergrams. Using combined 193A and 195A EUV observations by AIA/SDO and EUVI/STEREO_A, in conjunction with line-of-sight magnetograms taken by HMI/SDO, we track and analyze a coronal hole over 12 days to derive changes in morphology, area and magnetic field. We complement this analysis by potential field source surface modeling to compute the open field structure of the coronal hole. We find that the coronal hole exhibits an apparent tilting motion over time that cannot solely be explained by solar differential rotation. It tilts at a mean rate of ~3.2{\deg}/day that accelerates up to ~5.4{\deg}/day. At the beginning of May, the area of the coronal hole decreases by more than a factor of three over four days (from ~13 * 10^9 km^2 to ~4 * 10^9 km^2), but its open flux remains constant (~2 * 10^20 Mx). Further, the observed evolution is not reproduced by modeling that assumes the coronal magnetic field to be potential. In this study, we present a solar coronal hole that tilts at a rate that has yet to be reported in literature. The rate exceeds the effect of the coronal hole being advected by either photospheric or coronal differential rotation. Based on the analysis we find it likely that this is due to morphological changes in the coronal hole boundary caused by ongoing interchange reconnection and the interaction with a newly emerging ephemeral region in its vicinity.Comment: Accepted in A&A September 15, 2023; 10 pages, 8 figure

    Cardiac-sparing radiotherapy for locally advanced non-small cell lung cancer

    Get PDF
    Background We have carried out a study to determine the scope for reducing heart doses in photon beam radiotherapy of locally advanced non-small cell lung cancer (LA-NSCLC). Materials and methods Baseline VMAT plans were created for 20 LA-NSCLC patients following the IDEAL-CRT isotoxic protocol, and were re-optimized after adding an objective limiting heart mean dose (MDHeart). Reductions in MDHeart achievable without breaching limits on target coverage or normal tissue irradiation were determined. The process was repeated for objectives limiting the heart volume receiving ≥ 50 Gy (VHeart-50-Gy) and left atrial wall volume receiving ≥ 63 Gy (VLAwall-63-Gy). Results Following re-optimization, mean MDHeart, VHeart-50-Gy and VLAwall-63-Gy values fell by 4.8 Gy and 2.2% and 2.4% absolute respectively. On the basis of associations observed between survival and cardiac irradiation in an independent dataset, the purposefully-achieved reduction in MDHeart is expected to lead to the largest improvement in overall survival. It also led to useful knock-on reductions in many measures of cardiac irradiation including VHeart-50-Gy and VLAwall-63-Gy, providing some insurance against survival being more strongly related to these measures than to MDHeart. The predicted hazard ratio (HR) for death corresponding to the purposefully-achieved mean reduction in MDHeart was 0.806, according to which a randomized trial would require 1140 patients to test improved survival with 0.05 significance and 80% power. In patients whose baseline MDHeart values exceeded the median value in a published series, the average MDHeart reduction was particularly large, 8.8 Gy. The corresponding predicted HR is potentially testable in trials recruiting 359 patients enriched for greater MDHeart values. Conclusions Cardiac irradiation in RT of LA-NSCLC can be reduced substantially. Of the measures studied, reduction of MDHeart led to the greatest predicted increase in survival, and to useful knock-on reductions in other cardiac irradiation measures reported to be associated with survival. Potential improvements in survival can be trialled more efficiently in a population enriched for patients with greater baseline MDHeart levels, for whom larger reductions in heart doses can be achieved
    • …
    corecore