175 research outputs found
Two degree-of-freedom flutter solution for a personal computer
A computer programmed flutter solution has been written in the BASIC language for a personal computer. The program is for two degree-of-freedom bending torsion flutter applications and utilizes two dimensional Theodorsen aerodynamics. The aerodynamics were modified to include approximations for Mach number (compressibility) effects and aspect ratio (finite span) effects. Input options, user instructions, program listing, and a test case application are included
Computer code to interchange CDS and wave-drag geometry formats
A computer program has been developed on the PRIME minicomputer to provide an interface for the passage of aircraft configuration geometry data between the Rockwell Configuration Development System (CDS) and a wireframe geometry format used by aerodynamic design and analysis codes. The interface program allows aircraft geometry which has been developed in CDS to be directly converted to the wireframe geometry format for analysis. Geometry which has been modified in the analysis codes can be transformed back to a CDS geometry file and examined for physical viability. Previously created wireframe geometry files may also be converted into CDS geometry files. The program provides a useful link between a geometry creation and manipulation code and analysis codes by providing rapid and accurate geometry conversion
Geographically touring the eastern bloc: British geography, travel cultures and the Cold War
This paper considers the role of travel in the generation of geographical knowledge of the eastern bloc by British geographers. Based on oral history and surveys of published work, the paper examines the roles of three kinds of travel experience: individual private travels, tours via state tourist agencies, and tours by academic delegations. Examples are drawn from across the eastern bloc, including the USSR, Poland, Romania, East Germany and Albania. The relationship between travel and publication is addressed, notably within textbooks, and in the Geographical Magazine. The study argues for the extension of accounts of cultures of geographical travel, and seeks to supplement the existing historiography of Cold War geography
‘In shape and mind transformed’? Televised teaching and learning Shakespeare
Reality television offers the BBC the opportunity to fulfil its dual imperatives of education and entertainment, frequently constructed as anathematic. This article considers three recent examples of televised teaching and learning Shakespeare: When Romeo Met Juliet, Macbeth, the movie star and me, and Off By Heart: Shakespeare. It demonstrates the programmes’ fit with the reality genre through their common ingredients of authenticity, contained locations, hybridity, experts, fallible and flawed participants, articulation and reconciliation of social difference. Moreover, all three share an emphasis on a reality television staple: transformation, in terms of the participants’ knowledge, skills and personal growth, but also in relation to television audiences and the British education system. The programmes might thus usefully be understood as part of a reality television subgenre, evolving in Britain since the late 1970s, of Shmake-over. This article is published as part of a collection to commemorate the 400th anniversary of William Shakespeare’s death
Future projections of daily haze-conducive and clear weather conditions over the North China Plain using a perturbed parameter ensemble
We examine past and future changes in both winter haze and clear weather conditions over the North China Plain (NCP) using a perturbed parameter ensemble (PPE) and elucidate the influence of model physical parameterizations on these future projections for the first time. We use a large-scale meteorology-based haze
weather index (HWI) with values > 1 as a proxy for haze-conducive weather and HWI 1) is likely to increase whereas the frequency of clear weather (HWI 1) during winter over the NCP is found to be associated with an enhanced warming of the troposphere and weaker northwesterlies in the mid-troposphere over the NCP. We also examined the changes in the interannual variability of the haze-conducive and clear weather and found no marked changes in the variability during future periods. We find a clear influence of model physical parametrizations on climatological mean frequencies for both haze-conducive and clear weather. For the mid- to late 21st century (2033–2086), the parametric effect can explain up to ∼ 80 % of the variance in the climatological mean frequencies of PPE members. This shows that different model physical parameterizations lead to a different evolution of the model’s mean climate, particularly towards the end of the 21st century. Therefore, it is desirable to consider the PPE in addition to the initialized and multimodel ensembles to obtain a more comprehensive range of plausible future projections
Global and regional trends in particulate air pollution and attributable health burden over the past 50 years
Long-term exposure to ambient particulate matter (PM2.5, mass of particles with an aerodynamic dry diameter of < 2.5 μm) is a major risk factor to the global burden of disease. Previous studies have focussed on present day or future health burdens attributed to ambient PM2.5. Few studies have estimated changes in PM2.5 and attributable health burdens over the last few decades, a period where air quality has changed rapidly. Here we used the HadGEM3-UKCA coupled chemistry-climate model, integrated exposure-response relationships, demographic and background disease data to provide the first estimate of the changes in global and regional ambient PM2.5 concentrations and attributable health burdens over the period 1960 to 2009. Over this period, global mean population-weighted PM2.5 concentrations increased by 38%, dominated by increases in China and India. Global attributable deaths increased by 89% to 124% over the period 1960 to 2009, dominated by large increases in China and India. Population growth and ageing contributed mostly to the increases in attributable deaths in China and India, highlighting the importance of demographic trends. In contrast, decreasing PM2.5 concentrations and background disease dominated the reduction in attributable health burden in Europe and the United States. Our results shed light on how future projected trends in demographics and uncertainty in the exposure–response relationship may provide challenges for future air quality policy in Asia
Changes in anthropogenic precursor emissions drive shifts in the ozone seasonal cycle throughout the northern midlatitude troposphere
Simulations by six Coupled Model Intercomparison Project Phase 6 (CMIP6) Earth system models indicate that the seasonal cycle of baseline tropospheric ozone at northern midlatitudes has been shifting since the mid-20th century. Beginning in ∼ 1940, the magnitude of the seasonal cycle increased by ∼10 ppb (measured from seasonal minimum to maximum), and the seasonal maximum shifted to later in the year by about 3 weeks. This shift maximized in the mid-1980s, followed by a reversal – the seasonal cycle decreased in amplitude and the maximum shifted back to earlier in the year. Similar changes are seen in measurements collected from the 1970s to the present. The timing of the seasonal cycle changes is generally concurrent with the rise and fall of anthropogenic emissions that followed industrialization and the subsequent implementation of air quality emission controls. A quantitative comparison of the temporal changes in the ozone seasonal cycle at sites in both Europe and North America with the temporal changes in ozone precursor emissions across the northern midlatitudes found a high degree of similarity between these two temporal patterns. We hypothesize that changing precursor emissions are responsible for the shift in the ozone seasonal cycle; this is supported by the absence of such seasonal shifts in southern midlatitudes where anthropogenic emissions are much smaller. We also suggest a mechanism by which changing emissions drive the changing seasonal cycle: increasing emissions of NOx allow summertime photochemical production of ozone to become more important than ozone transported from the stratosphere, and increasing volatile organic compounds (VOCs) lead to progressively greater photochemical ozone production in the summer months, thereby increasing the amplitude of the seasonal ozone cycle. Decreasing emissions of both precursor classes then reverse these changes. The quantitative parameter values that characterize the seasonal shifts provide useful benchmarks for evaluating model simulations, both against observations and between models
Modular synthesis of semiconducting graft co-polymers to achieve ‘clickable’ fluorescent nanoparticles with long circulation and specific cancer targeting
Semiconducting polymer nanoparticles (SPNs) are explored for applications in cancer theranostics because of their high absorption coefficients, photostability, and biocompatibility. However, SPNs are susceptible to aggregation and protein fouling in physiological conditions, which can be detrimental for in vivo applications. Here, a method for achieving colloidally stable and low-fouling SPNs is described by grafting poly(ethylene glycol) (PEG) onto the backbone of the fluorescent semiconducting polymer, poly(9,9′-dioctylfluorene-5-fluoro-2,1,3-benzothiadiazole), in a simple one-step substitution reaction, postpolymerization. Further, by utilizing azide-functionalized PEG, anti-human epidermal growth factor receptor 2 (HER2) antibodies, antibody fragments, or affibodies are site-specifically “clicked” onto the SPN surface, which allows the functionalized SPNs to specifically target HER2-positive cancer cells. In vivo, the PEGylated SPNs are found to have excellent circulation efficiencies in zebrafish embryos for up to seven days postinjection. SPNs functionalized with affibodies are then shown to be able to target HER2 expressing cancer cells in a zebrafish xenograft model. The covalent PEGylated SPN system described herein shows great potential for cancer theranostics
Complex Risks from Old Urban Waste Landfills: Sustainability Perspective from Iasi, Romania
Landfills continue to represent the most frequent managerial practice for municipal solid wastes and an increasing and complex problem globally. In certain countries, a transition to an open society and free market is superimposed on the transition to sustainability, resulting in even higher complexity of management. This paper proposes an approach for problem-structuring of landfills in complex transitions: sustainability or unsustainability of a management approach is determined by a set of sustainability filters that are defined by sets of indicators and prioritized according the systemic concept of sustainability, which says that economy is embedded in society, which is embedded in nature. The writers exercise this approach with an old landfill in Iasi, Romania, and conclude for unsustainability, because the ecological sustainability filter is not successfully passed. Social and economic sustainability filters are also discussed in relation with the ecological sustainability indicators. The described approach allows a coherent, transdisciplinary synthesis of knowledge scattered across various disciplines, a pervasive problem in landfill management. The case study helps distinguish between generally true and context-dependent aspects.Peer reviewe
Interactions between atmospheric composition and climate change – progress in understanding and future opportunities from AerChemMIP, PDRMIP, and RFMIP
The climate science community aims to improve our understanding of climate change due to anthropogenic influences on atmospheric composition and the Earth's surface. Yet not all climate interactions are fully understood, and uncertainty in climate model results persists, as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report. We synthesize current challenges and emphasize opportunities for advancing our understanding of the interactions between atmospheric composition, air quality, and climate change, as well as for quantifying model diversity. Our perspective is based on expert views from three multi-model intercomparison projects (MIPs) – the Precipitation Driver Response MIP (PDRMIP), the Aerosol Chemistry MIP (AerChemMIP), and the Radiative Forcing MIP (RFMIP). While there are many shared interests and specializations across the MIPs, they have their own scientific foci and specific approaches. The partial overlap between the MIPs proved useful for advancing the understanding of the perturbation–response paradigm through multi-model ensembles of Earth system models of varying complexity. We discuss the challenges of gaining insights from Earth system models that face computational and process representation limits and provide guidance from our lessons learned. Promising ideas to overcome some long-standing challenges in the near future are kilometer-scale experiments to better simulate circulation-dependent processes where it is possible and machine learning approaches where they are needed, e.g., for faster and better subgrid-scale parameterizations and pattern recognition in big data. New model constraints can arise from augmented observational products that leverage multiple datasets with machine learning approaches. Future MIPs can develop smart experiment protocols that strive towards an optimal trade-off between the resolution, complexity, and number of simulations and their length and, thereby, help to advance the understanding of climate change and its impacts.</p
- …