TWO DEGREE-OF-FREEDOM FLUTTER SOLUTION FOR A PERSONAL COMPUTER

DAVID L. TURNOCK

LIBRARY EOPY

AT18105

LANGLEY RESEARCH CENTER
LIERARY, NASA
National Aeronautics and HAMPTON VIRGINIA Space Administration

Langley Research Center Hampton, Virginia 23665

David L. Turnock

SUMMARY

A computer program has been written for a personal computer which can be used to make two-degree-of-freedom (bending and torsion) flutter calculations by utilizing two-dimensional Theodorsen aerodynamics. The proaram may be used to approximately account for Mach number (compressibility) effects and aspect ratio (finite span) effects. This report contains the equations of motion, a program listing, user instructions, and test cases.

INTRODUCTION

Flutter is a self-excited dynamic oscillation produced hy a coupling of inertial and elastic forces with aerodynamic forces resulting from elastic deformations of an aircraft wing. These oscillations could result in sianificant structural damage. Consequently, flutter must be taken into account during aircraft desian; that is, the wing must be designed so that it will not flutter within the operating envelope of the airplane.

The types of vibrations that an airplane wing could experience in flight are illustrated in Figure 1.

If the wing is disturbed at flight conditions below the flutter boundary, the ensuing motion is a damped sinusoidal decaying oscillation as shown in Figure la. This is a stable condition. At the flutter boundary, any disturbance will cause the wing to oscillate at a constant amplitude as shown in Figure 1b. This is a neutrally stable condition. At conditions above the flutter boundary, a disturbance will produce a divergent oscillation as shown in Figure 1c. This is an unstable condition.

The purpose of this paper is to describe a computer program written for a personal, or home, computer that can he used to analyze aircraft wings for two-degree-of-freedom (bending and torsion) flutter. The equations of Theodorsen and Garrick (references 1 and 2) are implemented in this program. The analysis is a two-dimensional, two-dearee-of-freedom, representativesection method. Although this method is not new, it is sufficiently accurate for many present day applications.

The method employed is adequate for moderate-to-hiah aspect ratio wings and unswept or slightly swept wings. However, the analysis has certain limitations. The aerodynamics are only applicable at subsonic velocities. The analysis as implemented in the computer proaram does not include the effects of concentrated masses such as wing mounted engines and fuel tanks. It also does not include the effects of aerodynamic control surfaces such as ailerons. These limitations are very important to note. Furthermore, the analysis used by the program is only an approximation. Therefore, the results should only be used as a guide, not as the final authority to determine whether or not a new or old wing design is safe from flutter.

This report presents documentation of the computer program. Also presented are the derivation of the equations, user instructions, program listina, and test cases which serve as illustrative examples.

SYMBOLS

a	non-dimensional distance from midchord to elastic axis, positive aft
b	semichord, c/2, ft
C	chord, ft
e_{1}	span efficiency factor, function of taper ratio
f_{h}	fundamental frequency in plunge or bending, Hz
f_{α}	fundamental frequency in pitch or torsion, Hz
g	artificial damping
g_{h}, g_{α}	structural damping in plunge and pitch, respectively
h	vertical deflection of the wing in plunge, ft
$\dot{\mathrm{h}}$	plunge velocity of deflecting wing, ft/sec
$\ddot{\square}$	plunge acceleration of deflecting wing, ft/sec ${ }^{2}$
i	$\sqrt{-1}$, imaginary coefficient
k	reduced frequency, $h \omega / \mathrm{V}$
m	mass per unit length of span, slugs/ft
q	dynamic pressure, $\rho V^{2} / 2,1 \mathrm{l} / \mathrm{ft}^{2}$
r_{α}	radius of gyration of the wind, non-dimensional
S	full wing span, ft
${ }^{\text {X CG }}$	distance of center of gravity from leadina edae of wing, ft
XEA	distance of elastic axis from leading edge of wing, ft
x_{α}	distance of center of gravity location aft of the elastic axis, non-dimensional
A	area of the wing, ft^{2}
AR	aspect ratio
\bar{A}, \bar{B}	flutter determinant coefficients
C	Theodorsen circulation function
CG\%	center of gravity location, percent chord
$\mathrm{C}_{L_{\alpha}}$	lift curve slope, per radian
D, E	flutter determinant coefficients
EA\%	elastic axis location, percent chord
F	real part of Theodorsen's circulation function
G	imaginary part of Theodorsen's circulation function
H	altitude, ft
I_{α}	pitch inertia per unit lenath of span, sluq-ft ${ }^{2} / \mathrm{ft}$
L^{1}	lift per unit length of span, $1 \mathrm{~b} / \mathrm{ft}$
L_{h}	lift due to plunge, non-dimensional
L_{α}	lift due to pitch, non-dimensional
M	Mach number
M^{\prime}	moment per unit length of span, ft-lb/ft
M_{h}	moment due to plunge, non-dimensional
M_{α}	moment due to pitch, non-dimensional
S_{α}	wing imbalance, slua-ft.
V	velocity, ft/sec
V_{a}	speed of sound, ft/sec
Ve	equivalent airspeed, ft/sec

```
\alpha
\alpha pitch velocity of winq deflection about elastic axis, radians/sec
\alpha}\quad\mathrm{ pitch acceleration of wing deflection about elastic axis,
    radians/sec}\mp@subsup{}{}{2
    Mach number correction factor
    mass ratio, m/\pi\rhob}\mp@subsup{}{2}{2}\mathrm{ , nondimensional
    air density, slugs/ft}\mp@subsup{}{}{3
    coupled frequency, rad/sec
    fundamental plunge (bending) frequency, rad/sec
    fundamental pitch (torsion) frequency, rad/sec
    variable of substitution, complex frequency
    real part of complex frequency
    imaginary part of complex frequency
```


EQUATIONS OF MOTION

The flutter analysis used in this proaram is a two-dimensional, two-degree-of-freedom, representative-section method. The term "two-dimensional" applies to the aerodynamics that are utilized in the proaram. A twodimensional wing has a constant lift and moment along the span. "Two-degree-of-freedom" means that the wing is free to deform or vibrate in two different motions. In this case, the motions are bendina and torsion. Bending, or plunge, is the spanwise bending of the wing about the root. Torsion, or pitch, is the chordwise twisting of the wing about the rotation point or elastic axis of a heam-like wing. These motions are assumed to be simple harmonic or sinusoidal. "Representative section" means the wing characteristics can be represented by the properties and motions of a unit section of the wing. This section is chosen to be located at the three-auarter span station. The elasticity of the wing can be represented as two springs as shown attached to the wing section in Fiqure 2. If the wing is given a displacement, the wing will oscillate in simple harmonic motion (sinusoidal oscillations) at frequencies associated with the two degrees of freedom. Flutter occurs when these two modes of motion become coupled and extract energy from the airstream to produce a self-excited oscillation.

The governing differential equations for a two degree-of-freedom flutter problem are derived in reference 3 and repeated here as equations 1 and 2.

$$
\begin{align*}
& m \ddot{h}+S_{\alpha} \ddot{\alpha}+\frac{m \omega_{h}^{2} g_{h}}{\omega} \dot{h}+m \omega_{h}^{2} h=L^{\prime} \tag{1}\\
& S_{\alpha} \ddot{h}+I_{\alpha} \ddot{\alpha}+\frac{I_{\alpha} \omega_{\alpha}^{2} g_{\alpha}}{\omega} \dot{\alpha}+I_{\alpha} \omega_{\alpha}^{2} \alpha=M^{\prime} \tag{2}
\end{align*}
$$

These generalized forces are functions of the hending deflection h and the torsional twist a. These forces are defined explicitly in reference 3 and repeated here as equations 3 and 4.

$$
\begin{align*}
L^{\prime}= & \pi \rho b^{3} \omega^{2}\left\{L_{h} h / b+\left[L_{\alpha}-(1 / 2+a) L_{h}\right] \alpha\right\} \tag{3}\\
M^{\prime}= & \pi \rho b^{4} \omega^{2}\left\{\left[M_{h}-(1 / 2+a) L_{h}\right] h / b+\left[M_{\alpha}-(1 / 2+a)\left(L_{\alpha}+M_{h}\right)\right.\right. \tag{4}\\
& \left.\left.+(1 / 2+a)^{2} L_{h}\right] \alpha\right\}
\end{align*}
$$

where $L_{h}, L_{\alpha}, M_{h}, M_{\alpha}$ are defined by reference 3 as

$$
\begin{equation*}
L_{h}=1-2 i(1 / k)(F+i G) \tag{5}
\end{equation*}
$$

$L_{\alpha}=1 / 2-i(1 / k)[1+2(F+i G)]-2(1 / k)^{2}(F+i G)$
$M_{h}=1 / 2$
$M_{\alpha}=3 / 8-i(1 / k)$
These are termed Theodorsen aerodynamics because of their reliance on the Theodorsen circulation function.

$$
\begin{equation*}
C=F+i G \tag{9}
\end{equation*}
$$

The actual function is determiner hy several Bessel functions and other complicated mathematics. However, an approximation is given in reference 4 that is dependent upon the reduced frequency, k.

$$
c(k)=1-\frac{0.165}{1-\frac{0.0455}{k} i}-\frac{0.335}{1-\frac{0.3}{k} \mathbf{i}}
$$

Theodorsen assumed several things in the derivation of the aerodynamics. The major assumption was that the wing is two-dimensional. From this assumption follows the assumption of infinite span. To further simplify the aerodynamics, incompressible flow was assumed. However, hoth finite-span and
compressible-flow corrections can be included to determine their effect on the flutter characteristics. These corrections are defined in the following text.

The assumption of an infinite span is that no wing tip exists and the lift distribution is constant along the span of the wing. The lift curve slope of a two-dimensional wing is actually greater than the lift curve slope for a finite aspect ratio wing at the three auarter span location. For this reason the infinite aspect ratio assumption causes conservative results. However, for finite-span analysis, the equation for estimating the average lift curve slope is derived in reference 5 as

where $C_{L_{\alpha_{\infty}}}$ is $C_{L_{\alpha}}$ for infinite aspect ratio.
hence

$$
\begin{equation*}
L_{\alpha}=\frac{L_{\alpha_{\infty}}}{1+C_{L_{\alpha_{\infty}}}^{\pi e_{1} A R}} \tag{12}
\end{equation*}
$$

where
$\mathrm{L}_{\alpha_{\infty}}=$ original value for L_{α} from the Theodorsen aerodynamics
$C_{L_{\alpha_{\infty}}}=2 \pi$ from theoretical analysis
$e_{1}=.85$ for untapered wings
If the aspect ratio is assumed to be infinity as Theodorsen did, the corrected $\mathrm{C}_{\mathrm{L}_{\alpha}}$ is equal to $\mathrm{C}_{\mathrm{L}_{\alpha_{\infty}}}$.

Furthermore, a reduced lift means a reduced moment. Because the moment is equal to the lift multiplied by a distance, the moment is adjusted by the relationship

$$
\begin{equation*}
M_{\alpha}=\frac{L_{\alpha}}{L_{\alpha_{\infty}}} \quad M_{\alpha_{\infty}} \tag{13}
\end{equation*}
$$

where the value $M_{\alpha_{\infty}}$ is the original value calculated by the Theodorsen aerodynamics.

The assumption of incompressible flow means that the effects of Mach number are not considered in the calculations. The correction factor for compressible flow, which can be used below a Mach number of 0.8 , is derived in Reference 6 as

$$
\begin{equation*}
\beta=\frac{1}{\sqrt{1-M^{2}}} \tag{14}
\end{equation*}
$$

All Theodorsen aerodynamics are multiplied by this correction factor.

FLUTTER DETERMINANT
The solution of the flutter equations is described in this section. After the aerodynamic forces in equations 3 and 4 are substituted into equations 1 and 2 and simple harmonic motion is assumed, the two simultaneous equations that must be solved are given by

$$
\begin{align*}
& \bar{A} h / b+\bar{B} \alpha=0 \tag{15}\\
& \bar{D} h / b+E \alpha=0 \tag{16}
\end{align*}
$$

where

$$
\begin{align*}
& \bar{A}=\mu\left[1-\left(\frac{\omega_{\alpha}}{\omega}\right)^{2}\left(\frac{\omega_{h}}{\omega_{\alpha}}\right)^{2}\left(1+i g_{h}\right)\right]+L_{h} \tag{17}\\
& \bar{B}=\mu x_{\alpha}+L_{\alpha}-L_{h}(1 / 2+a) \tag{18}\\
& \bar{D}=\mu x_{\alpha}+1 / 2-L_{h}(1 / 2+a) \tag{19}
\end{align*}
$$

$$
\begin{aligned}
\bar{E}= & \mu r_{\alpha}^{2}\left[1-\left(\omega_{\alpha} / \omega\right)\left(1+i g_{\alpha}\right)\right]-1 / 2(1 / 2+a)+M_{\alpha} \\
& -L_{\alpha}(1 / 2+a)+L_{h}(1 / 2+a)^{2}
\end{aligned}
$$

Several methods exist for solving the system of equations 15 and 16. A popular method, and the one used here, is from Theodorsen and Garrick (references 1 and 2). An artificial damping g and complex frequency Ω are introduced where

$$
\begin{equation*}
\Omega=\left(\omega_{\alpha} / \omega\right)^{2}(1+i g) \tag{21}
\end{equation*}
$$

This term is introduced into equations 15 and 16 and the \bar{A} and \bar{E} expressions become

$$
\begin{gather*}
\bar{A}=\mu\left[1-\left(\omega_{h} / \omega_{\alpha}\right)^{2}\left(1+i g_{h}\right) \Omega\right]+L_{h} \tag{22}\\
\bar{E}=\mu r_{\alpha}^{2}\left[1-\Omega\left(1+i g_{\alpha}\right)\right]-1 / 2(1 / 2+\alpha)+M_{\alpha}-L_{\alpha}(1 / 2+a)+L_{h}(1 / 2+a)^{2} \tag{23}
\end{gather*}
$$

The \bar{B} and \bar{D} expressions remain unchanged.
For a non-trivial solution to exist, the determinant of the coefficients must vanish. That is,

$$
\begin{equation*}
\bar{A} \bar{E}-\bar{B} \bar{D}=0 \tag{24}
\end{equation*}
$$

Equation 24 is quadratic in Ω. The flutter solution occurs when Ω is real that is, when the artificial damping vanishes. Because the aerodynamic forces are parametric in reduced frequency k, equation 24 must be solved repeatedly to find the flutter solution. The individual solutions are usually plotted as shown in Figure 3 and the flutter velocity and frequency are ohtained from the araph. The flutter velocity is defined as the velocity where the damping value is zero. The flutter frequency is the corresponding frequency at that velocity.

Individual values are found each time equation 24 is solved for a value of reduced frequency. These values of velocity and frequency are obtained from the two resulting complex solutions by using equations 25 through 30.

$$
\begin{align*}
& \Omega=\Omega_{R}+i \Omega_{I} \tag{25}\\
& \Omega_{R}=\left(\omega_{\alpha} / \omega\right)^{2} \tag{26}\\
& \Omega_{I}=\left(\omega_{\alpha} / \omega\right)^{2} g \tag{27}\\
& g=\Omega_{I} / \Omega_{R} \tag{28}\\
& \omega=\frac{\omega \alpha}{\sqrt{\Omega_{R}}} \tag{29}\\
& V=b \omega / k \tag{30}
\end{align*}
$$

Equations 5 through 8, 12 through 14, and 22 through 30 were used as shown in the text in the "computerized" flutter solution. Eauations 10 and 17 through 20 were used in a slightly different form due to the use of complex mathematics. A complete listing of the program source code is found in Appendix A.

USER INSTRUCTIONS

Of course, any computer program is useless without the knowledge of how to use it. This section explains the input parameters needed by the program, discusses how to obtain specific numerical values, and describes various input options. A description of the output is also included.

Input of Structural Properties

Structural values may be difficult to obtain in the form required by the program. However, reference 7 and the following quidelines should help determine the values of certain parameters needed for input to the computer program.

Mass per unit length of span, m. This is mass in slugs (1 slug $=32.2$ lbs) of a one foot section of the wing. Assuming an untapered straight wing with constant mass properties throughout the value can be derived as

$$
m=\frac{\text { mass of wing (sluqs) }}{s(f t)}
$$

If the wing is tapered, swept, or has non-constant mass properties, the mass is determined for a one-foot-wide representative section centered about the three-auarter semi-span. Assuming a linear distribution of mass, the mass value is given by

$$
m=\frac{\text { mass of wing (slugs) }}{2 s(f t)}
$$

Center of gravity location. This is the location in percent chord of the point at which the wing batances on a knife edae as seen in Figure 4.

$$
\mathrm{CG} \%=\left(x_{\mathrm{CG}} / \mathrm{c}\right) \times 100
$$

Wing moment of inertia about rotation point, I_{α}. This is the pitch inertia of a one-foot representative section of the wing measured in slua-ft ${ }^{2}$. Experimental measurement may be done with a bifilar pendulum. (see reference 7, pp. 30-31.)

Elastic axis location. This is defined as the point about which the wing twists as illustrated in Figure 5.

$$
E A \%=\left(X_{E A} / c\right) \times 100
$$

Semichord length, b. This is one half the chord length of the representative section.

Natural hending and torsion frequencies f_{h}, f_{α}. These are fundamental
frequencies in Hertz of the wing in bending and torsion. These are functions of mass, inertia, and stiffness. (See reference 7, pp. 31-33.)

Structural damping - bending and torsion, g_{h}, g_{α}. This is defined as any internal damping of the structure. Values of .01 to . 03 are typical, however, for a solution that is conservative, a value of zero may be used.

Aspect ratio, AR. This is the ratio of span to chord defined as

$$
A R=s^{2} / A
$$

For straight, untapered wings, this reduces to

$$
A R=s / c
$$

For a fully two-dimensional analysis, an infinite aspect ratio should be used. Infinity however, cannot be input to a computer hecause of numerical difficulties. Therefore, a very large (but finite) value must be used. As very few wings have an aspect ratio greater than twenty, a value that is significantly greater than this ($100,000,000$ for instance) is recommended.

In making calculations to determine if a wing is free from flutter, it is prudent to assume that the aspect ratio is infinite because this assumption tends to cause conservative results.

Input for Graphic Output

The graphic input determines the plot resolution on the screen. A large scale may be needed for some solutions. However, that scale may be far too large for others. A typical plot appears in Figure 6. Guidelines for these input values follow:

Maximum frequency to be plotted. This is usually the nearest multiple of five ahove the torsion frequency.

Maximum velocity to be plotted. This should be about twice the expected flutter speed.

Maximum G-value. This is the maximum value of artificial damping that is plotted. A value of .05 is sufficient for most cases.

The above input will create two plots, frequency versus velocity and damping versus velocity. A typical plot has points off of the page. However, this is only undesirable if the flutter solution crossing point is off of the page.

Intermediate Values Option
As has been previously descrihed, a flutter solution consists of solving the equations at many different reduced freauency values. Two values of velocity, coupled freauency and damping are obtained each time the equations are solved. If intermediate values are to be printed, then every value will be printed. Appendix B illustrates a solution with all values being printed.

Air Density Option

The air density that the wing flies at is very important to the flutter characteristics. A wina may flutter at one velocity and altitude yet be very stable at the same velocity and a higher altitude. Therefore, air density must be input to the problem also. Two options exist within the proaram for this purpose.

Option 1 - One value for air density is input. This corresponds to flying the wing at one altitude.

Option 2 - Several values for air density. The computer will calculate a solution at each air density or altitude.

If option 2 is selected, then the following values must also be input:
Number of values - This is the number of times the program must calculate a flutter solution using a different value of air density each time.

Interval between values - This is the increment to be added to the previous density value for the next calculation.

First Value - This is the starting value for the computer to calculate.
Example. Three values with an interval of . 001 and a starting value of . 001 are as follows: .001, .002, and .003.

Mach Number Option
If compressibility effects are desired, a Mach number must be input. The input number must be less than one. If no compressibility effects are desired, a Mach number of zero should be used.

Program Output

The following information is output by the program:
Structural parameters. The structural input parameters are printed so that the parameters can be saved and known for the flutter solution.

Graphic input parameters. The graphic input parameters are printed in order to be able to determine the plot size.

Preliminary values. These values are printed in order to know the Mach Number and air density. These values appear before each solution.

Intermediate values. These are printed only if the intermediate values option is "turned on." The values that are printed are the reduced frequency k and the corresponding values of wing frequency, velocities, and dampina. These intermediate values are used to form data points which are then plotted.

Flutter values. The flutter values are printed alono with an appropriate message. Because there are two sets of values (one for bending and one for torsion), the flutter conditions (freauency, velocity) are the numbers with the corresponding damping or g-value that is close to zero.

The plots. The intermediate points of frequency and damping are plotted versus velocity. The points labeled "1" in Figure 3 are one set of intermediate points. As was stated before, two solutions existed for each reduced freauency. The points labeled "2" are the solutions of the determinant for a second value of reduced frequency.

The damping curves indicate that one mode will cross the axis. The point of crossing is the corresponding velocity at which the wing will flutter. The other mode will generally become very stable as airspeed increases.

Matched Point Solution

Because the air density is an important factor in flutter calculations, an aircraft may flutter near sea level yet be perfectly safe at the same velocity when flying at ten thousand feet. Due to this fact, a flutter boundary is sometimes defined as Mach number M versus dynamic pressure a. A matched point is defined as the density condition where the flutter velocity is the same velocity determined from the product of the Mach number and the speed of sound V_{a}. To find a matched point solution, multiple air densities are used in flutter solutions at the same Mach number. The velocities are
plotted against air density and a curve is faired through the points. Each value of air density corresponds to a particular altitude in the standard atmosphere for which the speed of sound also has a particular value. For the given Mach number a curve of velocity versus density is aenerated for the standard atmosphere. The point at which the two curves cross is the matched point. The corresponding velocity and air density are used to calculate dynamic pressure. When plotted as dynamic pressure against Mach number, a flutter boundary is defined. A complete matched point solution is aiven in Appendix C.

CONCLUDING REMARKS

A personal computer flutter solution has been written that employs modified two-dimensional Theodorsen aerodynamics for two dearee-of-freedom lifting surfaces. The solution is only adequate for unswept or slightly swept wings with no concentrated masses located on the liftina surface. The aerodynamics utilized are only adequate for subsonic velocities. Control surface flutter is not addressed by the program. These limitations are further stressed by noting that the program is only to be used as a quide and not the final authority for determining if a wing is free from flutter.

APPENDIX A

Copy of Computer Program Listing

The flutter solution was programmed on an Apple IIE computer. Printed and plotted solutions were obtained with an Epson printer with Graftrax interfaced by a Microbuffer II interface. ${ }^{1}$ The computer was configured with 64 K of internal memory and the program used less than 40K. This program was written in Applesoft BASIC. Obviously, the program will not run on other small computers unless it is modified to account for differences in other manufacturers BASIC codes. However, the conversion of the code should be relatively straightforward in most instances.

The listing of the program begins on the next page.
${ }^{1}$ Use of trade names does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

```
10 REM FLUTTER PROGRAM -- MODULAR SUBRDUTINES
20 FR# 1
30 FRINT CHR事 (9); "1L"
    : PRINT CHR年(9);"8ON"
    PR# O
    GOSUB 1000
    GOSUB 2000
    GOSUB 3000
    GOSUB 3500
    GOSUB 4000
    GOSUB 4500
    PRINT
        : PRINT
        : INPUT "MACH NUMBER ? ";MCH
    FOR L = 1 TO NR
    PR# 1
        : FRINT CHR: (12)
140
150
160 GOSUB
GOSUB 500
170 GOSUB 6000
180 FOR Q = 1 TO 25
190 GOSUB 5000
2 0 0 ~ G O S U B ~ 7 0 0 0 ~
210 GOSUE 8000
2 2 0 ~ G O S U B ~ 9 0 0 0 ~
230 GOSUB 10000
240 GOSUB 11000
250 GOSUB 12000
260 GOSUB 13000
270 GOSUB 17000
280 GOSUB 14000
290 NEXT Q
300 GOSUB 15000
310 PR# 1
320 PRINT CHR$ (9);"G2RDL"
33O TEXT
340 PR# O
350 FOR TD = 1 TD 500
    : NEXT TD
    NEXT L
370 INFUT "DO YOU WANT TO SEE ANOTHER MACH NUMBER ? ";Rक
S80 IF R惪 = "Y" THEN 110
390 END
500 REM INITIALIZE GRAPHICS
5 1 0 ~ H G R 2
5 2 0 ~ H C D L O R = 2
53O HPLOT 0,0 TO 0,42
    : HPLDT 0,50 TO 0,191
```

```
540 FOR X = 0 TO 27B STEP 2
550 HCOLOR= 2
5 6 0 ~ H P L O T ~ X , 4 2 ,
    : HPLOT X,117
570 HCOLDR= 1
5BO HPLOT (X + 1),42
    : HPLOT (X + 1),117
5 9 0 ~ N E X T ~ X ~
600 HPLOT 275,44
    : HPLOT 279,44
    : HPLOT 275,45
    : HPLOT 279,45
    : HPLOT 277,47
610 HPLDT 275,119
        HPLOT 279,119
        HFLOT 275,120
        HPLOT 279,120
        : HPLOT 277,122
620 HCOLOR=2
        : HPLOT 276,46
        : HPLOT 278,46
630 HPLOT 276,121
        : HPLOT 278,121
6 4 0 ~ R E T U R N
1000 REM DIMENSION VARIABLES
1010 DIM OMEGAF (2),K(126),KI (126),LH(2),LA(2),MOMENT (2),COEFF (3,2),VEL (2
    ),G(2,126),KN(2),KP(2)
102O RETURN
2000 REM SET CONSTANTS
2010 PI = 3.14159265
2020 R1 = 0.165
    :R2 = 1
        :R3 = 0.335
    :R4 = 1
2030 I1 = 0
        :I2 = -.0455
        : I3 = 0
    :14 = - . 3
2040 RETURN
3000 REM GET INPUT DATA
3010 HOME
302O INFUT "MASS PER FOQT SPAN (SLUGS) ? ";MASS
3OSO INPUT " C-G LOCATION (% OF CHORD) ? ";CG
3040 INPUT "WING MDMENT OF INERTIA ABOUT ROTATION POINT (SLUG-FT^2) ? ";
    IALPHA
3050 INPUT "ELASTIC AXIS LOCATION (% OF CHORD) ? ";EA
3O6O INPUT "SEMI-CHORD LENGTH (FEET) ? ";SEMCH
3070 INFUT "NATURAL BENDING FREQUENCY (HZ) ? ";OH
3080 INPUT "NATURAL TORSION FREQUENCY (HZ) ? ";OA
3090 INPUT "STRUCTURAL DAMPING - BENDING (% CRITICAL DAMPING) ? ";GH
3100 INPUT "STRUCTURAL DAMPING - TORSION (% CRITICAL DAMPING) ? ";GT
3110 INPUT " FULL SPAN ASPECT RATID ? ";RTIO
3120 PRINT
    : PRINT
3130 HOME
3140 REM CHECK PARAMETERS FOR CORRECTNESS
3150 PR# 1
3160 PRINT CHR& (12)
3170 PRINT "INPUT PARAMETERS : "
3180 PRINT
```

```
        : PRINT "MASS PER FODT SPAN : ";MASS;" SLUGS "
        3190
        PRINT
        3200 PRINT "CG LOCATION : ";CG;" % CHORD"
        3210 PRINT
        3220 PRINT "PITCH INERTIA : ";IALPHA;" SLUG-FT^2 "
        3230 PRINT
        3240 PRINT "ELASTIC AXIS LOCATION : ";EA;" % CHDRD "
        3250 PRINT
        3260 PRINT "SEMI-CHORD : ";SEMCH;" FEET"
        3270 PRINT
        3280 PRINT "NATURAL BENDING FREQUENCY : ";OH;" HZ"
        3290
        3300
        3310
332
3530
334
3350
3360 PRINT "FULL SPAN ASPECT RATID : ";RTIO
3 3 7 0 ~ P R I N T
    : PRINT
    - PR# O
3380
3 3 9 0
    : INPL
    : PRINT
    : PRINT
3400 IF A$ < > "Y" THEN 3000
3410 EA = EA/100
3420 GH = GH / 100
3430 GT = GT / 100
3440 CG = CG / 100
3450 RETURN
3500 REM GET PLOT DATA
3510 HOME
3520 INPUT "MAXIMLM VELDCITY TO BE PLOTTED (FEET/SEC) ? ";UMAX
35SO PRINT
$540 INFUT "MAXIMUM FREQUENCY TO BE PLOTTED (HZ) ? ";FMAX
3550 PRINT
3560 INPUT "MAXIMUM G-VALUE TO BE PLOTTED ? ";GMAX
3570 PR# 1
3580 HOME
3590 PRINT
    : FRINT "MAXIMUM VELOCITY TO BE PLOTTED : ";UMAX;" FEET/SEC"
3600 PRINT
    : PRINT "MAXIMUM FREQUENCY TO BE PLDTTED : ";FMAX;" HZ"
3610 PRINT
    : PRINT "MAXIMUM G-UALUE TO BE PLOTTED : ";GMAX
3620 PRINT
        : PR# O
3630 PRINT
    : INPUT " IS THIS CORRECT (Y/N) ? ";AF
3640 PRINT "
3650 IF AF < > "Y" THEN 3500
3660 HOME
3670 PRINT
    : INPUT "ARE INTERMEDIATE VALUES TO BE PRINTED ? ";NF
3680 PR# 1
3690 PRINT
    : PRINT
```

```
3700 PR# O
3710 RETURN
4000 REM READ K-VALUES
4010 FGR I = 1 TD 25
4 0 2 0 ~ R E A D ~ K ( I ) ~
4030 KI(I) = 1 / K(I)
4 0 4 0 ~ N E X T ~ I ~
4050 DATA 10.00,6.00,4.00,3.00,2.00,1.50,1.20,1.00,0.80,0.66,0.60,0.56,
    0.50,0.40,0.30,0.20,0.16,0.12,0.10,0.08,0.06,0.04,0.025,0.01,0.001
4 0 6 0 ~ R E T U R N
4500 REM READ IN OR GET RHO VALUES
4510 HOME
4520 FRINT "INPUT OPTIONS ON RHD : "
    : PRINT
4530 PRINT " 1. SINGLE RHO-USER DECIDED"
4540 PRINT " 2. MULTIPLE RHO'S-USER DECIDED "
4 5 5 0 ~ P R I N T
    : INPUT "OPTION ? ";CH
4560 IF CH = 1 THEN 4650
4570 PRINT
        : INPUT "HOW MANY RHO VALUES DD YOU WANT TD INPUT ";NR
4 5 8 0 ~ P R I N T
    : INFUT "INTERVAL BETWEEN VALUES ? ";RI
4 5 9 0 ~ P R I N T
    : INPUT "BEGINNING RHD VALUE ? ";BR
4 6 0 0 ~ D I M ~ R H O ~ ( N R )
4610 FOR L = 1 TO NR
4620 RHO(L) = BR + (L - 1) * RI
4 6 3 0 ~ N E X T ~ L ~
4640 RETURN
4650 NR = 1
4660 INPUT "RHO VALUE ? ";RHO(1)
4670 RETURN
5000 REM CALCULATE THEODORSON VALUES
5010 L1 = I2 / K(Q)
    :L2 = I4 / K(Q)
5020H=(R1 * R2 + I1 * L1) / ((R2^2) + (L1 ^ 2))
5030 J = (RJ * R4 + IJ * L2) / ((R4 ^ 2) + (L2 ^ 2))
5040 N = 1 - H-J
5050 HI = (R2 * I1 - R1 * L1) / ((R2 ^ 2) + (L1 ^ 2))
5060 JI = (R4 * I3 - R3* L2) / ((R4 ^ 2) + (L2 ^ 2))
5070 NI = O - HI - JI
5080 LH(1) = 1 + 2 *NI * KI(Q)
5090 LH(2) = - 2 *N * KI (Q)
5100LA(1)=1/2 + 2 * KI(Q) *NI - 2 * N * KI(Q) 人 2
5110LA(2)=-KI(Q) - 2 *KI(Q) *N - 2 * (KI(Q) ^2) * NI
5120 LR(1) = LA(1)
        :LR(2) = LA(2)
5130 FOR Z = 1 TO 2
5140LA(Z)=(1/(1 + 2/(.85 * RTI口))) * LR(Z)
5150 NEXT Z
5160 MOMENT (1) = 3/E
5170 MOMENT (2) = -KI (Q)
5180 FOR Z = 1 TO 2
5 1 9 0 \text { MOMENT (Z) = LA (Z) / LR(Z) * MOMENT (Z)}
5 2 0 0 ~ N E X T ~ Z ~
S210 BETA = 1 / SQR (1 - MCH ~ 2)
5220 FDR X = 1 TO 2
5230 LH(X) =LH(X) * BETA
5240 LA (X) = LA(X) * BETA
```

```
5250 MOMENT (X) = MOMENT (X) * BETA
5 2 6 0 ~ N E X T ~ X ~
5270 RETURN
6000 REM SET INTERMEDIATE CONSTANTS
6010 MU = MASS / (PI * RHO(L) * SEMCH ~ 2)
6020 IF MU > 4 THEN 6050
6 0 3 0 ~ P R \# ~ 1 ~
    : PRINT "WARNING - LOW MASS RATIO MAY INVALIDATE EQUATIONS ";
    PR# O
6 0 5 0 ~ X A L P H A ~ = ~ 2 ~ * ~ C G ~ - ~ 2 ~ * ~ E A ~
6060 RALPHA2 = IALPHA / (MASS * (SEMCH ^ 2))
6070 PSI = MU * RALPHAZ
6080 PHI = - 1 / 2 + 2 * EA
6090 DLTA = (OH /OA) ~2
6100 TAU = ML * XALPHA
6110 RETURN
7000 REM SET COEFFICIENTS
7010 COEFF (1,1) = MU * DLTA * PSI * (1 - GH * GT)
7020 COEFF(1,2) = MU * DLTA * PSI * (GT + GH)
7030 CDEFF(2,1) = MU * DLTA * (PHI / 2 - MDMENT(1) + LA(1) * PHI - LH(1)
    PHI ^2 - PSI - LA(2) * GH * PHI + GH * LH(2) * PHI^ 2 + MOMENT (2) *
    GH) + FSI * (LH(2) * GT - LH(1) - MU)
7040 COEFF (2,2) = MU * DLTA * (PHI * LA(2) - PHI ^ 2 * LH(2) - MOMENT (2) +
    FHI / 2 * GH - MOMENT(1) * GH + LA(1) * PHI * GH - GH * LH(1) * PHI ^
    2 - PSI * GH) + PSI * ( - LH(1) * GT - LH(2) - MU * GT)
7050 COEFF(3,1) = PSI * LH(1) + MOMENT(1) * LH(1) + MU * PSI - MU * PHI /
    2 + MU * MOMENT (1) - MU * LA(1) * PHI + MU * LH(1) * PHI ^ 2 - MOMEN
    T(2) * LH(2) - TAU ^ 2 + 2 * LH(1) * PHI - 1 / 2 * LA(1) - TAU / 2 -
    TAU * LA(1)
7060 COEFF(3,2) = LH(2) * (PSI - PHI / 2 - LA(1) * PHI + LH(1) * PHI ^ 2)
        + (LH(1) + MU) * (MOMENT (2) - LA(2) * PHI + LH(2) * PHI ^ 2) + LH(2
    ) * PHI * (TAU + LA(1) - LH(1) * PHI) - (LA(2) - LH(2) * PHI) * (TAL
        + 1 / 2 - LH(1) * PHI)
7070 RETURN
8000 REM SET 2ND INTERMEDIATE VALUES
8010 DR = COEFF(2,1) ^2-\operatorname{CoEFF}(2,2)^2 - 4 * COEFF(1,1) * COEFF}(3,1) +
    4 * COEFF(1,2) * COEFF(3,2)
8O2O DI = 2 * COEFF (2,1) * COEFF (2,2) - 4 * COEFF(1,1) * COEFF (3,2) + 4 *
    COEFF(1,2) * COEFF(3,1)
8030 SI = SQR (( - DR + SQR (DR ^ 2 + DI ^ 2)) / 2)
8040 5R = DI / (2 * SI)
8050 RETURN
9000 REM SET SRD INTERMEDIATE VALUES
9010 Y = ( ( - COEFF (2,1) + SR) * 2 * CDEFF(1,1) + ( - COEFF(2,2) + SI) *
    2 * COEFF(1,2)) / (4 * (COEFF(1,1) ^ 2 + CDEFF(1,2) ^ 2))
7020 z = (1 - COEFF(2,1) - SR) * 2 * CDEFF(1,1) + ( - COEFF(2,2) - SI) *
    2 * COEFF(1,2)) / (4 * (COEFF(1,1) 人 2 + COEFF(1,2) 人 2))
    U = (2 * COEFF(1,1) * ( - CDEFF (2,2) + SI) - ( - COEFF (2,1) + SR) *
    2 * COEFF(1,2)) / (4 * (COEFF(1,1) ^2 + COEFF(1,2) ^ 2))
    W = (2 * COEFF(1,1) * ( - COEFF(2,2) - SI) - ( - COEFF(2,1) - SR) *
    2* COEFF(1,2))/(4 * (CDEFF(1,1) ^2 + COEFF(1,2) ^ 2))
10000 REM SOLVE FOR FLUTTER FREQUENCIES
10010 IF Y < O THEN 10100
10020. IF Z < O THEN 10100
10030 OMEGAF(1) = OA / SQR (Y)
10040 OMEGAF (2) = OA / SQR (Z)
10050 RETURN
10100 TEXT
10110 PRINT "NEGATIVE NUMBER UNDER SQUARE RODT WHEN TRYING TO SOLVE FDR
```

9050

```
    FLUTTER FREQUENCY ";
10120 FRINT
    : PRINT "CALCULATIONS ABORTED";
10130 END
11000 REM SOLVE FOR FLUTTER VELOCITY
11010 VEL(1) = SEMCH * OMEGAF(1) * 2 * PI / K(Q)
11020 VEL (2) = SEMCH * DMEGAF (2) * 2 * PI / K(Q)
11030 RETURN
12000 REM SET 4TH INTERMEDIATE VALUES
12010 C1 = (OA / OMEGAF(1)) ^ 2
12020 C2 = (DA / OMEGAF (2)) ^ 2
12030 RETURN
13000 REM SOLVE FDR G-VALUES
13010 G(1,Q) =U/C1
13020 G(2,Q) = W / C2
1303O RETURN
14000 REM PRINT OUT PRELIMINARY DATA
14010 IF N* < > "Y" THEN 14040
14020 PR# 1
14030 PRINT
14040 FRINT "K-VALUE : ";K(Q)
14050 PRINT
    : PRINT "FREQUENCIES (HZ) : ";OMEGAF(1);" ";OMEGAF(2)
14060 PRINT
    : PRINT "VELOCITIES (F/S) : ";VEL(1);" ";VEL(2)
14070 PRINT
    : PRINT "G-UALUE : ";G(1,Q);" ";G(2,Q)
14080 PRINT
    : FRINT
14090 RETURN
15000 REM DWELL ON FLUTTER
15010 MR = 0
15020 RL = 0
15030 FOR E = 1 TD 2
15040 F1 = 0
15050 FOR M = 1 TO 25
15060 S1 = G(E,M)
    :S2 =G(E,M + 1)
15070 IF S1 < O AND S2 > O AND F1 = O THEN GOSUB 15400
15080 NEXT M
15090 NEXT E
15100 IF KN(1) > KN(2) THEN R = 1
15110 IF KN(2) > KN(1) THEN R = 2
15120 KL = KN(R)
    :KH = KP(R)
15130 FOR Q = 26 TO 125
15140 K(Q) = (KL + KH) / 2
15150 KI(Q)=1/K(Q)
15160 GOSUB 5000
15170 GOSUB 7000
15180 GOSUB 8000
15190 GOSUB 9000
15200 GOSUB 10000
15210 GOSUB 11000
15220 GOSUB 12000
15230 GOSUB 13000
15240 GOSUB 17000
15250 GOSUB"16000
15260 IF MR = 1 THEN 15310
15270: IF G(1,Q) > O AND G(2,Q) > O THEN KH = K(Q)
```

```
15280 IF G(1,Q) < O AND G(2,Q) < O THEN KL = K(Q)
15290 IF (G(1,Q)>O AND G(2,Q)< O) OR (G(1,Q)<O AND G(2,Q)>0) THEN
    KH=K(Q)
15300 NEXT Q
15310 RETURN
15400 F1 = 1
    :KN(E) = K(M)
    :KP(E) = K(M + 1)
    : RETURN
16000 REM PRINT DWELLING DATA
16010 IF N* < > "Y" THEN 16040
16020 PR# 1
16030 PRINT
16040 PRINT "K-VALUE : ";K(Q)
16050 PRINT
    : PRINT "FREQUENCIES : ";OMEGAF(1);" ";DMEGAF(2)
16060 PRINT
    : FRINT "VELOCITIES : ";VEL(1);" ";VEL(2)
16070 PRINT
    : PRINT "G-VALUES : ";G(1,Q);" ";G(2,Q)
16080 IF RL = 1 THEN 16170
16090 IF ABS (VEL(1) - VA) < = 1 OR ABS (VEL(2) - VB) < = 1 THEN 161
    20
16100 VA = VEL(1)
    :VB = VEL(2)
16110 GOTO 16190
16120 RL = 1
    :MR = 1
16130 PR# 1
16140 FRINT
16145 IF N = = "Y" THEN PRINT CHR$ (12)
16150 PRINT "THE AIRCRAFT WILL FLUTTER NEAR THE FOLLOWING VALUES "
16160 GOTO 16030
16170 PRINT
16180 PRINT GMAX * ( - 1);" STABLE DAMPING UNSTABLE ";GM
    AX;" O FREQ (HZ) ";FMAX;
16190 RETURN
17000 REM PLOT DATA
17010 X1 = INT (VEL(1) / VMAX * 280)
17020 X2 = INT (VEL(2) / UMAX * 280)
17030 Y1 = INT (G(1,0) / GMAX * 75)
17040 Y2 = INT (G(2,Q) / GMAX * 75)
17050 Z1 = INT (OMEGAF(1) / FMAX * 42)
17060 Z2 = INT (OMEGAF (2) / FMAX * 42)
17070 Y1 = 117 - Y1
    :Y2 = 117-Y2
    :Z1 = 42 - Z1
    :Z2 = 42- Z2
17080 IF X1 > 279 THEN 17160
17090 IF Z1 < O THEN 17140
17100 IF X1 = (2 * INT (X1 / 2)) THEN GOTO 17120
17110 HCOLOR= 1
    : GOTD 17130
17120 HCOLOR= 2
17130 HPLOT X1,Z1
17140 IF Y1 < 50 OR Y1 > 191 THEN 17160
17150 HPLOT X1,Y1
17160 IF X2 > 279 THEN 17240
17170 IF Z2 < O THEN 17220
17180 IF X2 = (2 * INT (X2 / 2)) THEN GOTO 17200
```

```
17190 HCOLOR= 1
    : GOTO 17210
    17200 HCOLOR= 2
    17210 HPLOT X2,72
    17220 IF Y2 < SO OR Y2 > 191 THEN 17240
    17230 HPLOT X2,Y2
    17240 RETURN
```


Sample Flutter Problem for Computer Program

Due to the fact that errors can occur in entering the program in the computer, a sample case is given which can be used to determine if the program is working correctly. The sample problem appears in reference 4 pp . 219-224. The listed values for input are,

$$
\begin{aligned}
& \mu=76 \\
& a=-0.15 \\
& x_{\alpha}=.25 \\
& r_{\alpha}^{2}=.388 \\
& b=5 \text { inches } \\
& \omega_{\alpha}=64.1 \text { radians } / \mathrm{sec} \\
& \omega_{h}=55.9 \text { radians } / \mathrm{sec} \\
& g_{h}=g_{\alpha}=0
\end{aligned}
$$

As most of these parameters are not in the units required as input for the program, the units are converted as follows:

$$
\begin{aligned}
& b=.4167 \mathrm{ft} \\
& \mathrm{f}_{\mathrm{h}}=\omega_{h} / 2 \pi=8.9 \mathrm{~Hz} \\
& \mathrm{f}_{\alpha}=\omega_{\alpha} / 2 \pi=10.2 \mathrm{~Hz} \\
& \mathrm{EA} \%=(1 / 2+\mathrm{a} / 2) \times 100=42.5 \% \\
& \mathrm{CG} \%=\mathrm{EA} \%+\left(\mathrm{x}_{\alpha} / 2 \times 100\right)=55 \%
\end{aligned}
$$

Assuming sea level air density

$$
\begin{aligned}
& \rho=.00237 \text { slugs } / \mathrm{ft}^{3} \\
& m=\mu \pi \rho b^{2}=.098 \text { slugs } / \mathrm{ft}-\mathrm{span}
\end{aligned}
$$

Therefore,

$$
I_{\alpha}=r_{\alpha}^{2} m^{2}=.0066 \text { slug-ft } t^{2} / f t-s p a n
$$

Furthermore, incompressible flow and infinite span are assumed. Therefore,

$$
\begin{aligned}
& M=0 \\
& A R=100,000,000 \text { (Essentially infinite) }
\end{aligned}
$$

The input parameters appear in Table I.
The full solution including the intermediate values is presented herein beginning on page 24. The solution is also plotted in Figure 6. The flutter solution is found by tracking one root of the quadratic to the crossing of the axis. The two successive k-values which have damping values on opposite sides of the axis are then averaged to determine the next k-value to be used. The solution process continues until the velocity difference for two successive
k-values is less than one foot per second. In other words, after first calculating that the flutter solution is between k-values of 0.3 and 0.2 , the program then iterates to find that the flutter solution is at a k-value of 0.28125, The flutter velocity is $89.3 \mathrm{ft} / \mathrm{sec}$. The difference of this soluiton from the one found in reference 4 is less than one percent. The reason for this difference may he due to the aerodynamic approximation of the program. The aerodynamics utilized by reference 4 are the actual values calculated from the Bessel functions whereas the algorithm used in the program is an approximation of these functions.

It is also interesting to note that the calculations at k-values of 0.01 and 0.001 indicate a second instability at about $173 \mathrm{ft} / \mathrm{sec}$ where both the frequency and dampina of one of the modes goes to zero. This is the static divergence speed. The divergence phenomena is discussed in textbooks such as references 3, 4, and 6.

```
MACH NUMBER : 0 AIR DENSITY : 2.37E-03 SLUGS/FT^3
K-VALUE : 10
FREQUENCIES (HZ): 12.4688466 7.90074515
VELOCITIES (F/S): 3.26459755 2.06857571
G-VALUE : -7.63529253E-05 -1.87306349E-03
K-VALUE : 6
FREQUENCIES (HZ):12.4655681 . 7.90116384
VELQCITIES (F/S) : 5.43956527 3.44780889
G-VALUE & -1.41403715E-04 -3.12198597E-03
K-VALUE : 4
FREQUENCIES (HZ) : 12.4588868 7.90205072
VELOCITIES (F/S) : 8.15497465 5.17229385
G-VALUE : -2.52936026E-04 -4.68383308E-03
K-VALUE : 3
FREQUENCIES (HZ):12.4494208 7.90331766
VELOCITIES (F/S): 10.8650383 6.8974975
G-VALUE : -4.12481448E-0'4 -6.24684599E-03
K-VALUE : 2
FREQUENCIES (HZ) : 12.4221688 7.90697101
VELOCITIES (F/S) : 16.2618817 10.3510289
G-VALLE : -9.33100061E-04 -9.37824872E-03
K-VALUE : 1.5
FREQUENCIES (HZ): 12.3835824 7.9121559
VELQCITIES (F/S):21.6151576 13.8104219
G-VALUE : -1.8052455E-03 -.0125208874
```

```
K-VALUE : 1.2
FREQUENCIES (HZ): 12.333302 7.91894171
VELOCITIES (F/S): 26.9092435 17.2778328
g-VALUE : -3.10577846E-03 -.0156811715
k-value : 1
FREQUENCIES (HZ): 12.2709408 7.9274217
VELOCITIES (F/S) : 32.127818 20.7556018
G-VALUE : -4.88165899E-03 -.0188676793
K-value : . 
FREQUENCIES (HZ) : 12.1539559 7.94358842
VELOCITIES (F/S) : 39.7769097 25.9974119
G-VALUE : -8.45986823E-03 -.0237219461
K-VALUE : . 66
FREQUENCIES (HZ): 11.998194日 7.9658$205
VELOCITIES (F/S):47.5965354 31.600175
G-VALUE : -.0133534084 -.0290210464
K-VALUE : . }
FREQUENCIES (HZ) : 11.8942858 7.98119105
VELOCITIES (F/S): 51.902764 34.8273015
G-VALUE : -.0165571556 -.0321504883
K-VALUE : . 56
FREQUENCIES (HZ) : 11.8050037 7.99481965
VELOCITIES (F/S) : 55.1926781 37.3786845
G-VALUE : -.0192229777 -.0346779895
```

```
K-VALUE : .5
FREQUENCIES (HZ):11.6273907 8.02324407
VELOCITIES (F/S) : 60.8857458 42.0129684
G-VALUE : -.0242034231 -.0394240991
K-VALUE : . }
FREQUENCIES (HZ) : 11.1289104 8.11506943
VELOCITIES (F/S): 72.8443754 53.1172543
G-VALUE : -.0351844704 -.052067462
K-VALUE : . S
FREQUENCIES (HZ):9.99785211 8.44082058
VELOCITIES (F/S) : 87.2546984 73.6659481
G-VALUE : -.0347203235 -.0898817964
K-VALUE : . 2
FREQUENCIES (HZ) : 8.81288397 8.56418574
VELOCITIES (F/S) : 115.36961 112.113898
G-VALUE : .243699161 -.437955103
K-VALUE : . 16
FREQUENCIES (HZ):8.45132548 8.12400021
VELOCITIES (F/S) : 138.295552 132.939277
G-VALUE : . 332460844 -.561335102
K-VALUE : . 12
FREQUENCIES (HZ) : 7.85576763 7.2834035
VELOCITIES (F/S): 171.399974 158.911927
G-VALUE : . 382571844 -.632265805
```

```
K-VALUE : . 1
FREQUENCIES (HZ) : 7.42124838. 6.5961167
VELOCITIES (F/S) : 194.303371 172.699746
g-VALUE : . 366175506 -.610284063
K-VALUE : . OB
FREQUENCIES (HZ) : 6.93017177 5.60964015
VELOCITIES (F/S): 226.807484 1日3.58973
G-VALUE : .285409318 -.506082019
K-value : .06
FREQUENCIES (HZ) : 6.69811934 4.23294678
VELOCITIES (F/S): 292.283971 184.711921
G-VALUE : . 147128775 - -. 334656658
K-value : . O4
FREQUENCIES (HZ) : 6.76022733 2.75350606
VELOCITIES (F/S) : 442.49124 180.230967
G-VALUE : .0668321095 -. 219908692
K-VALUE : . 025
FREQUENCIES (HZ): 6.80672942 1.68681855
VELOCITIES (F/S) : 712.856061 176.657357
G-VALLEE : .0351797178 -. 147910484
K-VALuE : . O1
FREQUENCIES (HZ) : 6.83071834 .66366487
VELOCITIES (F/S) : 1788.42094 173.760956
g-VALUE . : .01282117 -.0636466531
```

```
K-VALUE : 1E-03
FREQUENCIES (HZ) : 6.57653004 .0661068688
VELOCITIES (F/S) : 17218.6929 173.081223
G-VALUE : 1.64635228E-03 -6.47606803E-03
K-VALUE : . 25
FREQUENCIES : 9.13877632 8.80154616
VELOCITIES : 95.7086978 92.1769493
G-VALUES _ : . 102772118 -. 256309331
K-value : . }27
FREQUENCIES : 9.44658006 8.70630525
VELOCITIES : 89.9384262 82.8904628
G-VALUES : 5.42088915E-03 -. 142427175
K-VALUE : . }287
FREQUENCIES : 9.7390505 8.55501294
VELOCITIES : 8日.691528 77.9087416
G-VALUES : -.0240007964 -. 106496951
K-VALUE : . 28125
FREQUENCIES : 9.59222603 8.62878413
VELOCITIES : 89.2956372 80.3267954
G-VALUES : -.012886655 -. 120744428
```

the aircraft will flutter near the follawing values
K-VALUE : . 28125
FREQUENCIES : 9.59222663 B.62878413
VELOCITIES : 89.2956372 00.3267954
G-VALUES : -. $012886655-.120744428$

Note: When the program is executed, a plot of the results similar to the one shown in Figure 6 will be output following the listing.

APPENDIX C

A matched point solution is presented in this section. The solution is calculated for four different Mach numbers and the solution is presented in terms of dynamic pressure, altitude and equivalent airspeed.

The wing to be analyzed is taken from reference 3, page 203. An aspect ratio of eight was assumed. The input appears in table II. Air density option two was chosen and calculations were made for six value of air density. The interval between values was 0.0004 and the starting value was 0.0004 . The speed of sound at each air density was obtained from a standard atmosphere chart and then multiplied by the appropriate Mach number to obtain the coreresponding velocity.

The results for each Mach number are in Table III.
Results at $M=.4$. When the flutter velocity is plotted versus air density as shown in Figure 7, it is seen that the aircraft does not flutter at $M=.4$ at any altitude above sea level. Therefore, at $M=.4$ the aircraft is safe from flutter.

Results at $M=.5$. The velocity is plotted versus air density in Figure 8 the curve intersects the Mach 0.5 curve at an air density value of . 0021 slugs $/ \mathrm{ft}^{3}$ and a velocity of $550 \mathrm{ft} / \mathrm{sec}$.

Therefore,

$$
q=1 / 2 \rho v^{2}=317.6 \mathrm{lb} / \mathrm{ft}^{2}
$$

The altitude H, in feet, can be calculated for altitudes less than about 40,000 feet using the following equation which was derived from equations obtained from reference 5.

$$
H=145450 \cdot\left[1-\left(\frac{\rho}{.00237}\right)^{.23496}\right]
$$

Thus for $\rho=.0021$ the altitude is $H=4075 \mathrm{ft}$.
The equivalent airspeed is:

$$
v_{e}=v \sqrt{\frac{\rho}{.00237}}=517.7 \mathrm{ft} / \mathrm{sec}
$$

Therefore, the aircraft is safe from flutter at $M=.5$ for altitudes greater than 4075 ft . If the plane was at 4075 ft ., the aircraft would flutter when the equivalent airspeed is $517 \mathrm{ft} / \mathrm{sec}$. For a more detailed description of the relevance of equivalent airspeed see reference 8.

Results at $M=.6$

Using the above procedure, a matched point is found by using Figure 9. The plot indicates the curves crossing at an air density of 0.0014 slugs/ft ${ }^{3}$ and a velocity of $630 \mathrm{ft} / \mathrm{sec}$. The flutter conditions are therefore:

$$
\begin{aligned}
& \mathrm{q}=277.8 \mathrm{lb} / \mathrm{ft}^{2} \\
& \mathrm{H}=16922 \mathrm{ft} \\
& \mathrm{~V}_{\mathrm{e}}=484.2 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

Results at $M=.8$
Using Figure 10, the matched point occurs at

$$
\begin{aligned}
& \rho=.00065 \text { slugs } / \mathrm{ft}^{3} \\
& V=780 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \mathrm{a}=197.8 \mathrm{lbs} / \mathrm{ft}^{2} \\
& \mathrm{H}=38124 \mathrm{ft} \\
& \mathrm{~V}_{\mathrm{e}}=408.5 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

When plotted as dynamic pressure versus Mach number as shown in Figure 11, the flutter boundary is described. However, when plotted as equivalent airspeed versus Mach number as in Figure 12, the flutter boundary takes on added meaning when the altitude lines are drawn. This plot makes it easy to visualize where the aircraft is safe in terms of altitude and equivalent air speed. The abbreviation " K " means thousand and is utilized in terms of feet (i.e., 10K means 10,000 feet altitude).

REFERENCES

1. Theodorsen, T.: General Theory of Aerodynamic Instability and the Mechanism of Flutter. NACA TR 496, 1935.
2. Theodorsen, T.; and Garrick, I. E.: Mechanism of Flutter, A Theoretical and Experimental Investigation of the Flutter Problem. NACA TR 685, 1940.
3. Scanlan, Robert H.; and Rosenbaum, Robert: Aircraft Vibration and Flutter. Dover Publications, Inc., New York, NY, 1968.
4. Fung, Y. C.: The Theory of Aeroelasticity. Dover Publications, Inc., New York, NY, 1969.
5. Dommasch, Daniel 0.; Sherby, Sydney S.; and Connolly, Thomas F.: Airplane Aerodynamics. Third Edition. Pitman Publishing Corporation, New York, NY, 1961.
6. Bisplinghoff, Raymond L.; Ashley, Holt; and Halfman, Robert L.: Aeroelasticity. Second Edition. Addison-Wesley Publishing Company, Inc., Reading, MA, 1957.
7. Ricketts, Rodney H.: Structural Testing for Static Failure, Flutter, and Other Scary Things. NASA TM-84606, 1983.
8. Hanson, P. W.: All You Ever Wanted to Know About Flutter But Were Too Smart to Ask! Soaring, August 1977, pp. 40-45.

Table I.- Input for problem in Appendix B.

```
INPUT PARAMETERS :
MASS PER FOOT SPAN : . O98 SLUGS
CG LOCATION : 55 % CHORD
FITCH INERTIA : 6.bE-03 SLUG-FT^2
ELASTIC AXIS LOCATION : 42.5 % CHORD
SEMI-CHORD : . 4167 FEET
NATURAL BENDING FREQUENCY : 8.9 HZ
NATURAL TORSION FREQUENCY : 10.2 HZ
BENDING DAMPING : 0 % CRITICAL DAMPING
TORSION DAMPING : O %CRITICAL DAMPING
FULL SPAN ASPECT RATIO : 100000000
MAXIMUM VELOCITY TO BE PLOTTED : 200 FEET/SEC
MAXIMUM FREQUENCY TO BE PLOTTED : 15 HZ
MAXIMUM G-VALUE TO BE PLOTTED : .OS
```

Table II.- Input for problem in Appendix C.

INPUT PARAMETERS :

MASS PER FOOT SPAN : . 6516 SLUGS
CG LOCATION : 46 \% CHORD
PITCH INERTIA : 3.375 SLUG-FT^2
ELASTIC AXIS LOCATION : 35% CHORD
SEMI-CHORD : 3.125 FEET
NATURAL BENDING FREQUENCY: 9.9 HZ
NATURAL TORSION FREQUENCY : 16.02 HZ
BENDING DAMPING : 0 \% CRITICAL DAMPING
TORSION DAMPING: 0 \%CRITICAL DAMPING
FULL SPAN ASPECT RATID : B

MAXIMUM VELOCITY TO BE PLOTTED : 1200 FEET/SEC
MAXIMUM FREQUENCY TO BE PLOTTED : 20 HZ
MAXIMUM G-VALUE TO BE PLOTTED : . 05

Table III.- Results of Matched Point Problem in Appendix C

Mach Number M	$\begin{gathered} \text { Air Density } \\ \rho, \\ \text { slugs/ft }{ }^{3} \end{gathered}$	$\begin{gathered} \text { Flutter Velocity } \\ V, \\ \mathrm{ft} / \mathrm{sec} \end{gathered}$	Mach Number Velocity, MV ${ }_{a}, f t / s e c$
. 4	. 0004	1192	387
	. 0008	862	393
	. 0012	717	412
	. 0016	630	426
	. 0020	572	438
	. 0024	529	447
. 5	. 0004	1161	484
	. 0008	840	492
	. 0012	699	515
	. 0016	614	533
	. 0020	559	547
	. 0024	516	559
. 6	. 0004	1118	581
	. 0008	810	590
	. 0012	674	618
	. 0016	594	640
	. 0020	539	656
	. 0024	500	670
. 8	. 0004	977	774
	. 0008	709	786
	. 0012	593	824
	. 0016	525	853
	. 0020	480	875
	. 0024	448	894

Figure 1.- Time histories of stability.

Figure 2.- Wing parameters utilized in analysis.

Figure 3.- Typical plots for a flutter solution.

Figure 4.- Location of center of gravity of a wing.

Figure 5.- Location of elastic axis of a wing.

Mach number: 0 Air density: $2.37 E-03$ slugs/ft ${ }^{3}$
The aircraft will flutter near the following values
K-value: . 28125
Frequencies: $9.59222603 \quad 8.62878413$
Velocities : 89.2956372 80.3267954
'G-values : -. $012886655 \quad-.120744428$

Figure 6.- Solution of sample problem in Appendix B.

Figure 7.- Matched point for Mach .4.

Figure 8.- Matched point for Mach . 5.

Figure 9.- Matched point for Mach .6.

Figure 10.- Matched point for Mach .8.

Figure 11.- Dynamic pressure flutter boundary.

Figure 12.- Equivalent airspeed flutter boundary.

End of Document

