39 research outputs found

    Cognitive control in belief-laden reasoning during conclusion processing: An ERP study

    Get PDF
    Belief bias is the tendency to accept conclusions that are compatible with existing beliefs more frequently than those that contradict beliefs. It is one of the most replicated behavioral findings in the reasoning literature. Recently, neuroimaging studies using functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs) have provided a new perspective and have demonstrated neural correlates of belief bias that have been viewed as supportive of dual-process theories of belief bias. However, fMRI studies have tended to focus on conclusion processing, while ERPs studies have been concerned with the processing of premises. In the present research, the electrophysiological correlates of cognitive control were studied among 12 subjects using high-density ERPs. The analysis was focused on the conclusion presentation phase and was limited to normatively sanctioned responses to valid–believable and valid–unbelievable problems. Results showed that when participants gave normatively sanctioned responses to problems where belief and logic conflicted, a more positive ERP deflection was elicited than for normatively sanctioned responses to nonconflict problems. This was observed from −400 to −200 ms prior to the correct response being given. The positive component is argued to be analogous to the late positive component (LPC) involved in cognitive control processes. This is consistent with the inhibition of empirically anomalous information when conclusions are unbelievable. These data are important in elucidating the neural correlates of belief bias by providing evidence for electrophysiological correlates of conflict resolution during conclusion processing. Moreover, they are supportive of dual-process theories of belief bias that propose conflict detection and resolution processes as central to the explanation of belief bias

    Tratamento medicamentoso dos tumores hipofisários. parte II: adenomas secretores de ACTH, TSH e adenomas clinicamente não-funcionantes

    Full text link

    The Role of Scavenging in Disease Dynamics

    Get PDF
    Contents Introduction................ 161 The Use of Animal Remains and the Exposure of Scavengers to Disease........ 163 The Relevance of Scavenging for Pathogens to Spread and Persist.......... 166 Human Related Factors Resulting in Increased Risk for Disease Transmission Through Scavenging.............. 170 Management of Scavenging to Reduce Disease Risks.............. 173 Restoration of Large Predators.................. 174 Elimination of Hunting of Scavengers............ 174 Destruction of Big Game and Domestic Animal Carcasses........... 174 Restoration of the Effects of Overabundance............. 175 Excluding Mammalian and Avian Scavengers from Natural Carrions.......... 176 Excluding Mammalian and Avian Scavengers from Vulture Restaurants........... 176 Conclusions and Future Perspectives........... 178 References............... 17

    Layer-by-layer assembled membranes with immobilized porins

    No full text
    New and advanced opportunities are arising for the synthesis and functionalization of membranes with selective separation, reactivity, and stimuli-responsive behavior. One such advancement is the integration of bio-based channels in membrane technologies. By a layer-by-layer (LbL) assembly of polyelectrolytes, outer membrane protein F trimers (OmpF) or “porins” from Escherichia coli with central pores ∼2 nm in diameter at their opening and ∼0.7 × 1.1 nm at their constricted region are immobilized within the pores of poly(vinylidene fluoride) microfiltration membranes, in contrast to traditional ruptured lipid bilayer or vesicle processes. These OmpF-membranes demonstrate selective rejection of non-charged organics over ionic solutes, allowing the passage of up to 2 times more salts than traditional nanofiltration membranes starting with rejections of 84% for 0.4 to 1.0 kDa organics. The presence of charged groups in OmpF-membranes also leads to pH-dependent salt rejection through Donnan exclusion. These OmpF-membranes also show exceptional durability and stability, delivering consistent and constant permeability and recovery for over 160 h of operation. Characterization of the solutions containing OmpF and the membranes was conducted during each stage of the process, including detection by fluorescence labelling (FITC), zeta potential, pH responsiveness, flux changes, and rejection of organic–inorganic solutions
    corecore